This test expects pthread_mutex_init in the frame #0 of thread T1 but we
get memset at frame #0 because memset that is called from pthread_init_mutex
is being intercepted by TSan
llvm-svn: 261986
Pass res instead of len as third parameter to COMMON_INTERCEPTOR_WRITE_RANGE,
because otherwise we can write to unrelated memory (in MSan) or get wrong report (in ASan).
Differential Revision: http://reviews.llvm.org/D17608
llvm-svn: 261898
This patch moves recv and recvfrom interceptors from MSan and TSan to
sanitizer_common to enable them in ASan.
Differential Revision: http://reviews.llvm.org/D17479
llvm-svn: 261841
Summary: As per the test the 4th element of both arrays are not initialized and hence will contain garbage values. Memcmp returns the difference between the garbage values of the 4th element which will be different on every run of the test. And since the return value of memcmp is returned from main, we are getting random exit code every time.
Reviewers: kcc, eugenis
Subscribers: mohit.bhakkad, jaydeep, llvm-commits
Differential: http://reviews.llvm.org/D17534
llvm-svn: 261739
The first issue is that we longjmp from ScopedInterceptor scope
when called from an ignored lib. This leaves thr->in_ignored_lib set.
This, in turn, disables handling of sigaction. This, in turn,
corrupts tsan state since signals delivered asynchronously.
Another issue is that we can ignore synchronization in asignal
handler, if the signal is delivered into an IgnoreSync region.
Since signals are generally asynchronous, they should ignore
memory access/synchronization/interceptor ignores.
This could lead to false positives in signal handlers.
llvm-svn: 261658
Test cases definitely should not care about the complete set of architectures
supported by compiler-rt - they should only care about current
architecture that the test suite was configured for.
Introduce new lit feature to reflect this, and convert tests to use it.
llvm-svn: 261603
I ran the test suite yesterday and when I came back this morning the
queue_user_work_item.cc test was hung. This could be why the
sanitizer-windows buildbot keeps randomly timing out. I updated all the
usages of WaitForSingleObject involving threading events. I'm assuming
the API can reliably wait for subprocesses, which is what the majority
of call sites use it for.
While I'm at it, we can simplify some EH tests now that clang can
compile C++ EH.
llvm-svn: 261338
Compiler-rt only relies on LLVM for lit support. Pushing this dependency down into the test and unitest layers will allow builtin libraries to be built without LLVM.
llvm-svn: 261105
1. Add two explicit -stdlib=libstdc++ in conjunction with -static-libstdc++
2. Pass -nostdinc++ when adding include paths for libc++ built for tsan. This
prevents clang finding the headers twice which would confuse #include_next
Differential Revision: http://reviews.llvm.org/D17189
llvm-svn: 260883
There's no obvious reason it should fail in this way but it's the only change
on the blamelist. I suspect stale lit*.cfg's from previous builds.
llvm-svn: 260672
The lit test-suite containing the unit tests needs to be explicitly specified
as an argument to lit.py since it is no longer discovered when the other tests
are run (because they are one directory deeper).
dfsan, lsan, and sanitizer_common don't show the same problem.
llvm-svn: 260669
Summary:
In some cases stack pointer register (SP) doesn't point into the thread
stack: e.g. if one is using swapcontext(). In this case LSan
conservatively tries to scan the whole thread stack for pointers.
However, thread stack (at least in glibc implementation) may also
include guard pages, causing LSan to crash when it's reading from them.
One of the solutions is to use a pthread_attr_getguardsize() to adjust
the calculated stack boundaries. However, here we're just using
IsAccessibleMemoryRange to skip guard pages and make the code (slightly)
less platform-specific.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17116
llvm-svn: 260554
This test isn't posix specific, but it doesn't pass on Windows and is
XFAILed. I suspect that this test, which is expected to fail, is causing
the hangs I'm seeing on our WinASan builder. Moving it to Posix seems
to be the cleanest way to avoid running it on Windows.
llvm-svn: 260480
Summary:
Previously, the tests only ran for the 64-bit equivalent of the default target
(see -m64).
Given the supported architecture list only contains 64-bit targets, this happens
to work out the same as the supported targets in most cases but may matter for
X86_64/X86_64h on Darwin.
For other targets, the practical effect is that the test names contain the
architecture. This resolves some confusion when lsan tests fail since their
name no longer implies that they are trying to test the default target.
Reviewers: samsonov
Subscribers: tberghammer, danalbert, llvm-commits, srhines
Differential Revision: http://reviews.llvm.org/D16859
llvm-svn: 260232