The function did not handle every case. In some cases this
caused assertion failure.
After the fix the function returns DependentTy if the exact
return type can not be determined.
It seems that clang itself does not call the function in the
affected cases but some checker or other code may call it.
Reviewed By: hokein
Differential Revision: https://reviews.llvm.org/D95244
Fixes bug http://bugs.llvm.org/show_bug.cgi?id=49000.
This patch allows Clang-Tidy checks to do
diag(X->getLocation(), "text") << Y->getSourceRange();
and get the highlight of `Y` as expected:
warning: text [blah-blah]
xxx(something)
^ ~~~~~~~~~
Reviewed-By: aaron.ballman, njames93
Differential Revision: http://reviews.llvm.org/D98635
In D84673, we started using `DiagnosticsEngine` during command-line parsing in more contexts.
When using `ToolInvocation`, a custom `DiagnosticsConsumer` can be specified and it might expect `SourceManager` to be present on the emitted diagnostics.
This patch ensures the `SourceManager` is set up in such scenarios.
Test authored by Jordan Rupprecht.
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D99414
`expandedTokens(SourceRange)` used to do a binary search to get the
expanded tokens belonging to a source range. Each binary search uses
`isBeforeInTranslationUnit` to order two source locations. This is
inherently very slow.
By profiling clangd we found out that users like clangd::SelectionTree
spend 95% of time in `isBeforeInTranslationUnit`. Also it is worth
noting that users of `expandedTokens(SourceRange)` majorly use ranges
provided by AST to query this funciton. The ranges provided by AST are
token ranges (starting at the beginning of a token and ending at the
beginning of another token).
Therefore we can avoid the binary search in majority of the cases by
maintaining an index of ExpandedToken by their SourceLocations. We still
do binary search for ranges which are not token ranges but such
instances are quite low.
Performance:
`~/build/bin/clangd --check=clang/lib/Serialization/ASTReader.cpp`
Before: Took 2:10s to complete.
Now: Took 1:13s to complete.
Differential Revision: https://reviews.llvm.org/D99086
As of CMake commit https://gitlab.kitware.com/cmake/cmake/-/commit/d993ebd4,
which first appeared in CMake 3.19.x series, in the compile commands for
clang-cl, CMake puts `--` before the input file. When operating on such a
database, the `InterpolatingCompilationDatabase` - specifically, the
`TransferableCommand` constructor - does not recognize that pattern and so, does
not strip the input, or the double dash when 'transferring' the compile command.
This results in a incorrect compile command - with the double dash and old input
file left in, and the language options and new input file appended after them,
where they're all treated as inputs, including the language version option.
Test files for some tests have names similar enough to be matched to commands
from the database, e.g.:
`.../path-mappings.test.tmp/server/bar.cpp`
can be matched to:
`.../Driver/ToolChains/BareMetal.cpp`
etc. When that happens, the tool being tested tries to use the matched, and
incorrectly 'transferred' compile command, and fails, reporting errors similar
to:
`error: no such file or directory: '/std:c++14'; did you mean '/std:c++14'? [clang-diagnostic-error]`
This happens in at least 4 tests:
Clang Tools :: clang-tidy/checkers/performance-trivially-destructible.cpp
Clangd :: check-fail.test
Clangd :: check.test
Clangd :: path-mappings.test
The fix for `TransferableCommand` removes the `--` and everything after it when
determining the arguments that apply to the new file. `--` is inserted in the
'transferred' command if the new file name starts with `-` and when operating in
clang-cl mode, also `/`. Additionally, other places in the code known to do
argument adjustment without accounting for the `--` and causing the tests to
fail are fixed as well.
Differential Revision: https://reviews.llvm.org/D98824
Currently our strategy for getting header compile flags is something like:
A) look for flags for the header in compile_commands.json
This basically never works, build systems don't generate this info.
B) try to match to an impl file in compile_commands.json and use its flags
This only (mostly) works if the headers are in the same project.
C) give up and use fallback flags
This kind of works for stdlib in the default configuration, and
otherwise doesn't.
Obviously there are big gaps here.
This patch inserts a new attempt between A and B: if the header is
transitively included by any open file (whether same project or not),
then we use its compile command.
This doesn't make any attempt to solve some related problems:
- parsing non-self-contained header files in context (importing PP state)
- using the compile flags of non-opened candidate files found in the index
Fixes https://github.com/clangd/clangd/issues/123
Fixes https://github.com/clangd/clangd/issues/695
See https://github.com/clangd/clangd/issues/519
Differential Revision: https://reviews.llvm.org/D97351
OpaqueValueExpr doesn't correspond to the concrete syntax, it has
invalid source location, ignore them.
Reviewed By: kbobyrev
Differential Revision: https://reviews.llvm.org/D96112
The EndLoc of a type loc can be invalid for broken code.
Also extend the existing test to support error code with `error-ok`
annotation.
Differential Revision: https://reviews.llvm.org/D96261
Stencils `maybeDeref` and `maybeAddressOf` are designed to handle nodes that may
be pointers. Currently, they only handle native pointers. This patch extends the
support to recognize smart pointers and handle them as well.
Differential Revision: https://reviews.llvm.org/D93637
Migrate to the `FileEntryRef` overload of `SourceManager::createFileID`
(using `FileManager::getOptionalFileRef`) in RefactoringTest.cpp and
RewriterTestContext.h.
No functionality change.
Differential Revision: https://reviews.llvm.org/D92967
Previously, loading one from a file meant allowing the library to do the IO.
Clangd would prefer to do such IO itself (e.g. to allow caching).
Differential Revision: https://reviews.llvm.org/D92640
This function doesn't seem to be used in-tree outside tests.
However clangd wants to use it soon, and having the CDB be self-contained seems
reasonable.
Differential Revision: https://reviews.llvm.org/D92646
The static_assert in "libcxx/include/memory" was the main offender here,
but then I figured I might as well `git grep -i instantat` and fix all
the instances I found. One was in user-facing HTML documentation;
the rest were in comments or tests.
A number of declarations were leftover after the move from `clang::tooling` to
`clang::transformer`. This patch removes those declarations and upgrades the
handful of references to the deprecated declarations.
Differential Revision: https://reviews.llvm.org/D92340
Currently, `node` only includes the semicolon for (some) statements. However,
declarations have the same issue of (potentially) trailing semicolons, so `node`
should behave the same for them.
Differential Revision: https://reviews.llvm.org/D91872
Don't match Stmt or Decl nodes not spelled in the source when using
TK_IgnoreUnlessSpelledInSource. This prevents accidental modification
of source code at incorrect locations.
Differential Revision: https://reviews.llvm.org/D90984
Update the ASTNodeTraverser to dump only nodes spelled in source. There
are only a few which need to be handled, but Decl nodes for which
isImplicit() is true are handled together.
Update the RAV instances used in ASTMatchFinder to ignore the nodes too.
As with handling of template instantiations, it is necessary to allow
the RAV to process the implicit nodes because they need to be visitable
before the first traverse() matcher is encountered. An exception to
this is in the MatchChildASTVisitor, because we sometimes wish to make a
node matchable but make its children not-matchable. This is the case
for defaulted CXXMethodDecls for example.
Extend TransformerTests to illustrate the kinds of problems that can
arise when performing source code rewriting due to matching implicit
nodes.
This change accounts for handling nodes not spelled in source when using
direct matching of nodes, and when using the has() and hasDescendant()
matchers. Other matchers such as
cxxRecordDecl(hasMethod(cxxMethodDecl())) still succeed for
compiler-generated methods for example after this change. Updating the
implementations of hasMethod() and other matchers is for a follow-up
patch.
Differential Revision: https://reviews.llvm.org/D90982
Summary:
IgnoreUnlessSpelledInSource mode should ignore these because they are
not written in the source. This matters for example when trying to
replace types or values which are templated. The new test in
TransformerTest.cpp in this commit demonstrates the problem.
In existing matcher code, users can write
`unless(isInTemplateInstantiation())` or `unless(isInstantiated())` (the
user must know which to use). The point of the
TK_IgnoreUnlessSpelledInSource mode is to allow the novice to avoid such
details. This patch changes the IgnoreUnlessSpelledInSource mode to
skip over implicit template instantiations.
This patch does not change the TK_AsIs mode.
Note: An obvious attempt at an alternative implementation would simply
change the shouldVisitTemplateInstantiations() in ASTMatchFinder.cpp to
return something conditional on the operational TraversalKind. That
does not work because shouldVisitTemplateInstantiations() is called
before a possible top-level traverse() matcher changes the operational
TraversalKind.
Reviewers: sammccall, aaron.ballman, gribozavr2, ymandel, klimek
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80961
This gives us slightly nicer syntax (foreach) for idioms currently expressed
as a loop, and the option to use range algorithms where it makes sense
(e.g. llvm::all_of et al encapsulate the needed flow control in a useful way).
It's also a building block for iteration over filtered views (e.g. iterate over
all Stmt children, with the right type):
for (const Statement &S : filter<Statement>(N.children()))
...
I realize the recent direction has been mostly towards strongly-typed
node-specific facilities, but I think it's important we have convenient
generic facilities too.
Differential Revision: https://reviews.llvm.org/D90023
This functionality is commonly needed in clang tidy checks (based on
transformer) that only print warnings, without suggesting any edits. The no-op
edit allows the user to associate a diagnostic message with a source location.
Differential Revision: https://reviews.llvm.org/D89961
This allows building the clang-format unit tests in only 657 ninja steps
rather than 1257 which allows for much faster incremental builds after a
git pull.
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D89709
This allows removing the clangAST dependency from libclangToolingCore and
therefore allows clang-format to be built without depending on clangAST.
Before 1166 files had to be compiled for clang-format, now only 796.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D89708
Currently, `after` fails when applied to locations in macro arguments. This
change projects the subrange into a file source range and then applies `after`.
Differential Revision: https://reviews.llvm.org/D89468
The Callbacks.cpp test was taking a long time to compile on some build bots
causing timeouts. This patch splits up that test into five separate cpp
files and a header file.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D88886
After this change all nodes that have a delimited-list are using the
`List` API.
Implementation details:
Let's look at a declaration with multiple declarators:
`int a, b;`
To generate a declarator list node we need to have the range of
declarators: `a, b`:
However, the `ClangAST` actually stores them as separate declarations:
`int a ;`
`int b;`
We solve that by appropriately marking the declarators on each separate
declaration in the `ClangAST` and then for the final declarator `int
b`, shrinking its range to fit to the already marked declarators.
Differential Revision: https://reviews.llvm.org/D88403
There can be Macros that are tagged with `modifiable`. Thus verifying
`canModifyAllDescendants` is not sufficient to avoid macros when deep
copying.
We think the `TokenBuffer` could inform us whether a `Token` comes from
a macro. We'll look into that when we can surface this information
easily, for instance in unit tests for `ComputeReplacements`.
Differential Revision: https://reviews.llvm.org/D88034
* Introduce `TreeTest.cpp` to unit test `Tree.h`
* Add `generateAllTreesWithShape` to generating test cases
* Add tests for `findFirstLeaf` and `findLastLeaf`
* Fix implementations of `findFirstLeaf` and `findLastLeaf` that had
been broken when empty `Tree` were present.
Differential Revision: https://reviews.llvm.org/D87779
In a future patch
* Implement helper function to generate Trees for tests
* and test Tree methods, namely `findFirstLeaf` and `findLastLeaf`
Differential Revision: https://reviews.llvm.org/D87533