We do sometimes load from a too small stack slot when dealing with x86 arguments
(varargs and smaller-than-32-bit args). It looks like we know what we are doing
in those cases, so I am going to remove the assert instead of artifically
enlarging stack slot sizes.
The assert in storeRegToStackSlot stays in. We don't want to write beyond the
bounds of a stack slot.
llvm-svn: 109764
The size of this object isn't used for anything - technically it is of variable
size.
This avoids a false positive from the assert in
X86InstrInfo::loadRegFromStackSlot, and fixes PR7735.
llvm-svn: 109652
subregister operands like this:
%reg1040:sub_32bit<def> = MOV32rm <fi#-2>, 1, %reg0, 0, %reg0, %reg1040<imp-def>; mem:LD4[FixedStack-2](align=8)
Make them return false when subreg operands are present. VirtRegRewriter is
making bad assumptions otherwise.
This fixes PR7713.
llvm-svn: 109489
we are using AVX and no AVX version of the desired intruction is present,
this is better for incremental dev (without fallbacks it's easier to spot
what's missing). Not sure this is the best hack thought (we can also disable
all HasSSE* predicates by dinamically marking them 'false' if AVX is present)
llvm-svn: 109434
appropriate for targets without detailed instruction iterineries.
The scheduler schedules for increased instruction level parallelism in
low register pressure situation; it schedules to reduce register pressure
when the register pressure becomes high.
On x86_64, this is a win for all tests in CFP2000. It also sped up 256.bzip2
by 16%.
llvm-svn: 109300
SSE, so we can't return floating point values if this
is disabled. Detect this error for clang.
With SSE1 only, f64 is a problem; it can be done, but
neither llvm-gcc nor clang has ever generated correct
code for it. Since nobody noticed this I think it's
OK to treat it as an error for now.
This also handles SSE-sized vectors of floating point.
8207686, 8204109.
llvm-svn: 109201
rip out the implementation of X86InstrInfo::GetInstSizeInBytes.
The code being ripped out just implemented a copy and hacked up
version of the (old) instruction encoder, and is buggy and
terrible in other ways. Since "GetInstSizeInBytes" is really
only there to support the JIT's "NeedsExactSize" hook (which
noone is using), just rip out the code. I will rip out the
NeedsExactSize hook next.
This resolves rdar://7617809 - switch X86InstrInfo::GetInstSizeInBytes to use X86MCCodeEmitter
llvm-svn: 109149
asmprinter or mangler around. This is option #B for killing off
X86InstrInfo::GetInstSizeInBytes. Option #A (killing
"needsexactsize") was sent for consideration to llvmdev.
llvm-svn: 109056
1) all registers were spilled as xmm, regardless of actual size
2) win64 abi doesn't do the varargs-size-in-%al thing
Still to look into:
xmm6-15 are marked as clobbered by call instructions on win64 even though they aren't.
llvm-svn: 109035
of AsmPrinter and InstLowering into libx86 and out of the
asmprinter subdirectory. Now X86/AsmPrinter just depends on
MC stuff, not all of codegen and LLVM IR.
llvm-svn: 108782