This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.
I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.
This reverts commit 7bdad08429,
and some of it's follow-ups, that don't stand on their own.
This patch includes the supporting code that enables always
instrumenting the function entry block by default.
This patch will NOT the default behavior.
It adds a variant bit in the profile version, adds new directives in
text profile format, and changes llvm-profdata tool accordingly.
This patch is a split of D83024 (https://reviews.llvm.org/D83024)
Many test changes from D83024 are also included.
Differential Revision: https://reviews.llvm.org/D84261
And bump its version number accordingly.
This is a patched recommit of 7c298c104b
Previous hash implementation was incorrectly passing an uint64_t, that got converted
to an uint8_t, to finalize the hash computation. This led to different functions
having the same hash if they only differ by the remaining statements, which is
incorrect.
Added a new test case that trivially tests that a small function change is
reflected in the hash value.
Not that as this patch fixes the hash computation, it would invalidate all hashes
computed before that patch applies, this is why we bumped the version number.
Update profile data hash entries due to hash function update, except for binary
version, in which case we keep the buggy behavior for backward compatibility.
Differential Revision: https://reviews.llvm.org/D79961
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Add PGO support at -O0 in the experimental new pass manager to sync the
behavior of the legacy pass manager.
Also change the test of gcc-flag-compatibility.c for more complete test:
(1) change the match string to "profc" and "profd" to ensure the
instrumentation is happening.
(2) add IR format proftext so that PGO use compilation is tested.
Differential Revision: https://reviews.llvm.org/D64029
llvm-svn: 367628
Lifting from Bob Wilson's notes: The hash value that we compute and
store in PGO profile data to detect out-of-date profiles does not
include enough information. This means that many significant changes to
the source will not cause compiler warnings about the profile being out
of date, and worse, we may continue to use the outdated profile data to
make bad optimization decisions. There is some tension here because
some source changes won't affect PGO and we don't want to invalidate the
profile unnecessarily.
This patch adds a new hashing scheme which is more sensitive to loop
nesting, conditions, and out-of-order control flow. Here are examples
which show snippets which get the same hash under the current scheme,
and different hashes under the new scheme:
Loop Nesting Example
--------------------
// Snippet 1
while (foo()) {
while (bar()) {}
}
// Snippet 2
while (foo()) {}
while (bar()) {}
Condition Example
-----------------
// Snippet 1
if (foo())
bar();
baz();
// Snippet 2
if (foo())
bar();
else
baz();
Out-of-order Control Flow Example
---------------------------------
// Snippet 1
while (foo()) {
if (bar()) {}
baz();
}
// Snippet 2
while (foo()) {
if (bar())
continue;
baz();
}
In each of these cases, it's useful to differentiate between the
snippets because swapping their profiles gives bad optimization hints.
The new hashing scheme considers some logical operators in an effort to
detect more changes in conditions. This isn't a perfect scheme. E.g, it
does not produce the same hash for these equivalent snippets:
// Snippet 1
bool c = !a || b;
if (d && e) {}
// Snippet 2
bool f = d && e;
bool c = !a || b;
if (f) {}
This would require an expensive data flow analysis. Short of that, the
new hashing scheme looks reasonably complete, based on a scan over the
statements we place counters on.
Profiles which use the old version of the PGO hash remain valid and can
be used without issue (there are tests in tree which check this).
rdar://17068282
Differential Revision: https://reviews.llvm.org/D39446
llvm-svn: 318229
The root cause of the issues reported in D32406 and D34680 is that clang
instruments functions without bodies. Make it stop doing that, and also
teach it how to use old (incorrectly generated) profiles without
crashing.
llvm-svn: 306883
Fix the fact that we don't assign profile counters to constructors in
classes with virtual bases, or constructors with variadic parameters.
Differential Revision: https://reviews.llvm.org/D30131
llvm-svn: 296062
This sets the maximum entry count among all functions in the program to the module using module flags. This allows the optimizer to use this information.
Differential Revision: http://reviews.llvm.org/D15163
llvm-svn: 255918
(This is part-2 of the patch -- fixing test cases)
Before the patch, -fprofile-instr-generate compile will fail
if no integrated-as is specified when the file contains
any static functions (the -S output is also invalid).
This patch fixed the issue. With the change, the index format
version will be bumped up by 1. Backward compatibility is
preserved with this change.
Differential Revision: http://reviews.llvm.org/D15243
llvm-svn: 255366
This patch adds support for specifying where the profile is emitted in a
way similar to GCC. These flags are used to specify directories instead
of filenames. When -fprofile-generate=DIR is used, the compiler will
generate code to write to <DIR>/default.profraw.
The patch also adds a couple of extensions: LLVM_PROFILE_FILE can still be
used to override the directory and file name to use and -fprofile-use
accepts both directories and filenames.
To simplify the set of flags used in the backend, all the flags get
canonicalized to -fprofile-instr-{generate,use} when passed to the
backend. The decision to use a default name for the profile is done
in the driver.
llvm-svn: 241825
We were assigning the counter for the body of the loop to the loop
variable initialization for some reason here, but our tests completely
lacked coverage for range-for loops. This fixes that and makes the
logic generally more similar to the logic for a regular for.
llvm-svn: 236277
We've added support for a multiple functions with the same name in
LLVM's profile data, so the lookup returning the function hash it
found doesn't make sense anymore. Update to pass in the hash we
expect.
This also adds a test that the version 1 format is still readable,
since the new API is expected to handle that.
llvm-svn: 214586
Improve the warning when building with -fprofile-instr-use and a file
appears not to have been profiled at all. This keys on whether a
function is defined in the main file or not to avoid false negatives
when one includes a header with functions that have been profiled.
llvm-svn: 211760
In preparation for using a binary format for instrumentation based
profiling, explicitly treat the test inputs as text and transform them
before running. This will allow us to leave the checked in files in
human readable format once the instrumentation format is binary.
No functional change.
llvm-svn: 206509
The function hash should change when control flow changes. This patch
hashes the type of each AST node that affects counters, rather than just
counting how many there are. These types are combined into a small
enumerator that currently has 16 values.
The new hash algorithm packs the enums for consecutively visited types
into a `uint64_t`. In order to save space for new types, the types are
assumed to be 6-bit values (instead of 4-bit). In order to minimize
overhead for functions with little control flow, the `uint64_t` is used
directly as a hash if it never fills up; if it does, it's passed through
an MD5 context.
<rdar://problem/16435801>
llvm-svn: 206397
CapturedStmt was being ignored by instrumentation based profiling, and
its counters attributed to the containing function. Instead, we need
to treat this as a top level entity, like we do with blocks.
llvm-svn: 206231
Until now we were generating duplicate counters for lambdas: one set
in the function where the lambda was declared and another for the
lambda itself. Instead, we should skip over the bodies of lambdas in
their containing contexts.
llvm-svn: 206081
If all of our weights are zero when calculating branch weights, it
means we haven't profiled the code in question. Avoid creating a
metadata node that says all branches are equally likely in this case.
The test also checks constructs that hit the other createBranchWeights
overload. These were already working.
llvm-svn: 205606
The hash itself is still the number of counters, which isn't all that
useful, but this separates the API changes from the actual
implementation of the hash and will make it easier to transition to
the ProfileData library once it's implemented.
llvm-svn: 204186
This updates CodeGenPGO to use the ProfileDataReader introduced to
llvm in r203703 and the new API for writing out the profile introduced
to compiler-rt in r203710.
llvm-svn: 203711
PGO counters are 64-bit and branch weights are 32-bit. Scale them down
when necessary, instead of just taking the lower 32 bits.
<rdar://problem/16276448>
llvm-svn: 203592
Some of this data had gotten out of date, so we weren't quite testing
what we thought we were. This also moves the outdated data test to its
own file to simplify regenerating the test data.
llvm-svn: 203546
These tests are logically related, but they're spread about several
different CodeGen directories. Consolidate them in one place to make
them easier to manage.
llvm-svn: 203541