unpredicated. That is, turn
subeq r0, r1, #1
addne r0, r1, #1
into
sub r0, r1, #1
addne r0, r1, #1
For targets where conditional instructions are always executed, this may be
beneficial. It may remove pseudo anti-dependency in out-of-order execution
CPUs. e.g.
op r1, ...
str r1, [r10] ; end-of-life of r1 as div result
cmp r0, #65
movne r1, #44 ; raw dependency on previous r1
moveq r1, #12
If movne is unpredicated, then
op r1, ...
str r1, [r10]
cmp r0, #65
mov r1, #44 ; r1 written unconditionally
moveq r1, #12
Both mov and moveq are no longer depdendent on the first instruction. This gives
the out-of-order execution engine more freedom to reorder them.
This has passed entire LLVM test suite. But it has not been enabled for any ARM
variant pending more performance evaluation.
rdar://8951196
llvm-svn: 146914
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBCommandReturnObject.AppendMessage().
llvm-svn: 146911
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBCommandInterpreter APIs.
llvm-svn: 146909
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBModule and SBSection APIs.
llvm-svn: 146899
"id" from being found by the parser as an
externally-defined type. Before, "id" would
sometimes make it through if it was defined in
a namespace, but this sometimes caused
confusion, for example when it conflicted with
std::locale::id.
llvm-svn: 146891
This change reduces the number of instructions generated.
For example,
(load (add (sub $n0, $n1), (MipsLo got(s))))
results in the following sequence of instructions:
1. sub $n2, $n0, $n1
2. lw got(s)($n2)
Previously, three instructions were needed.
1. sub $n2, $n0, $n1
2. addiu $n3, $n2, got(s)
3. lw 0($n3)
llvm-svn: 146888
with a definition pointer (e.g., C++ and Objective-C classes), zip
through the redeclaration chain to make sure that all of the
declarations point to the definition data.
As part of this, realized again why the first redeclaration of an
entity in a file is important, and brought back that idea.
llvm-svn: 146886
redeclaration templates (RedeclarableTemplateDecl), similarly to the
way (de-)serialization is implemented for Redeclarable<T>. In the
process, found a simpler formulation for handling redeclaration
chains and implemented that in both places.
The new test establishes that we're building the redeclaration chains
properly. However, the FIXME indicates where we're tickling a
different bug that has to do with us not setting the DefinitionData
pointer properly in redeclarations that we detected after the
definition itself was deserialized. The (separable) fix for that bug
is forthcoming.
llvm-svn: 146883
Now that getMatchingSuperRegClass() returns accurate results, it can be
used to compute constraints imposed by instructions using a sub-register
of a virtual register.
This means we can recompute the register class of any virtual register
by combining the constraints from all its uses.
llvm-svn: 146874
Use information computed while inferring new register classes to emit
accurate, table-driven implementations of getMatchingSuperRegClass().
Delete the old manual, error-prone implementations in the targets.
llvm-svn: 146873
Teach TableGen to create the missing register classes needed for
getMatchingSuperRegClass() to return maximal results. The function is
still not auto-generated, so it still returns inexact results.
This produces these new register classes:
ARM:
QQPR_with_dsub_0_in_DPR_8
QQQQPR_with_dsub_0_in_DPR_8
X86:
GR64_with_sub_32bit_in_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOSP
GR64_with_sub_16bit_in_GR16_NOREX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX
GR64_TC_and_GR64_with_sub_32bit_in_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX_NOSP
GR64_TCW64_and_GR64_with_sub_32bit_in_GR32_NOAX
GR64_TC_and_GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_NOREX
GR64_with_sub_32bit_in_GR32_TC
GR64_with_sub_32bit_in_GR32_ABCD_and_GR32_NOAX
GR64_with_sub_32bit_in_GR32_NOAX_and_GR32_TC
GR64_with_sub_32bit_in_GR32_AD
GR64_with_sub_32bit_in_GR32_AD_and_GR32_NOAX
The other targets in the tree are not weird enough to be affected.
llvm-svn: 146872
imported modules that don't introduce any new entities of a particular
kind. Allow these entries to be replaced with entries for another
loaded module.
In the included test case, selectors exhibit this behavior.
llvm-svn: 146870
which there are no redeclarations. This reduced by size of the PCH
file for Cocoa.h by ~650k: ~536k of that was in the new
LOCAL_REDECLARATIONS table, which went from a ridiculous 540k down to
an acceptable 3.5k, while the rest was due to the more compact
abbreviated representation of redeclarable declaration kinds (which no
longer need to store the 'first' declaration ID).
llvm-svn: 146869
The integral types now work with clang trunk (if you remove the guard), although we're still missing an intrinsic for initialising atomics (needed for C1x too).
Howard: Please review.
llvm-svn: 146865