Disallow complex types of function-local metadata. The only valid
function-local metadata is an `MDNode` whose sole argument is a
non-metadata function-local value.
Part of PR21532.
llvm-svn: 223564
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
llvm-svn: 223189
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
This is a Microsoft calling convention that supports both x86 and x86_64
subtargets. It passes vector and floating point arguments in XMM0-XMM5,
and passes them indirectly once they are consumed.
Homogenous vector aggregates of up to four elements can be passed in
sequential vector registers, but this part is not implemented in LLVM
and will be handled in Clang.
On 32-bit x86, it is similar to fastcall in that it uses ecx:edx as
integer register parameters and is callee cleanup. On x86_64, it
delegates to the normal win64 calling convention.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D5943
llvm-svn: 220745
Summary:
Make CallingConv::ID a plain unsigned instead of enum with a
fixed set of valus. LLVM IR allows arbitraty calling conventions (you are
free to write cc12345), and loading them as enum is an undefined
behavior. This was reported by UBSan.
Test Plan: llvm regression test suite
Reviewers: nicholas
Reviewed By: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5248
llvm-svn: 217529
The attached patch simplifies a few interfaces that don't need to take
ownership of a buffer.
For example, both parseAssembly and parseBitcodeFile will parse the
entire buffer before returning. There is no need to take ownership.
Using a MemoryBufferRef makes it obvious in the type signature that
there is no ownership transfer.
llvm-svn: 216488
Summary:
There is no functionality change here except in the way we assemble and
dump musttail calls in variadic functions. There's really no need to
separate out the bits for musttail and "is forwarding varargs" on call
instructions. A musttail call by definition has to forward the ellipsis
or it would fail verification.
Reviewers: chandlerc, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4892
llvm-svn: 216423
Implement `uselistorder` and `uselistorder_bb` assembly directives,
which allow the use-list order to be recovered when round-tripping to
assembly.
This is the bulk of PR20515.
llvm-svn: 216025
* Use StringRef instead of std::string&
* Return a std::unique_ptr<Module> instead of taking an optional module to write
to (was not really used).
* Use current comment style.
* Use current naming convention.
llvm-svn: 215989
Previously all `blockaddress()` constants were treated as forward
references. They were resolved twice: once at the end of the function
in question, and again at the end of the module. Furthermore, if the
same blockaddress was referenced N times, the parser created N distinct
`GlobalVariable`s (one for each reference).
Instead, resolve all block addresses at the beginning of the function,
creating the standard `BasicBlock` forward references used for all other
basic block references. After the function, all references can be
resolved immediately. To check for the condition of parsing block
addresses from within the same function, I created a reference to the
current per-function-state in `BlockAddressPFS`.
Also, create only one forward-reference per basic block. Because
forward references to block addresses are rare, the data structure here
shouldn't matter. If somehow it does someday, this can be pretty easily
changed to a `DenseMap<std::pair<ValID, ValID>, GV>`.
This is part of PR20515.
llvm-svn: 215952
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
llvm-svn: 211920
clang was needlessly duplicating whole memory buffer contents in an attempt to
satisfy unclear ownership semantics. Let's just hide internal LLVM quirks and
present a simple non-owning interface.
The public C API preserves previous behaviour for stability.
llvm-svn: 211861
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
llvm-svn: 210062
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
llvm-svn: 209007
This reverts commit r200561.
This calling convention was an attempt to match the MSVC C++ ABI for
methods that return structures by value. This solution didn't scale,
because it would have required splitting every CC available on Windows
into two: one for methods and one for free functions.
Now that we can put sret on the second arg (r208453), and Clang does
that (r208458), revert this hack.
llvm-svn: 208459
One error we were not deleting the alias or putting it in the Module. The
end result is that there was an use left of the aliasee when the module was
deleted.
llvm-svn: 208447
Visibilities of `hidden` and `protected` are meaningless for symbols
with local linkage.
- Change the assembler to reject non-default visibility on symbols
with local linkage.
- Change the bitcode reader to auto-upgrade `hidden` and `protected`
to `default` when the linkage is local.
- Update LangRef.
<rdar://problem/16141113>
llvm-svn: 208263
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
This adds a warning when linker_private or linker_private_weak is provided and
we handle it in a compatible manner.
Suggested by Chris Lattner!
llvm-svn: 205681
This restores the linker_private and linker_private_weak lexemes to permit
translation of the deprecated lexmes. The behaviour is identical to the bitcode
handling: linker_private and linker_private_weak are handled as if private had
been specified. This enables compatibility with IR generated by LLVM 3.4.
Reported on IRC by ki9a!
llvm-svn: 205675
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
llvm-svn: 203376
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
llvm-svn: 202821
MSVC always places the 'this' parameter for a method first. The
implicit 'sret' pointer for methods always comes second. We already
implement this for __thiscall by putting sret parameters on the stack,
but __cdecl methods require putting both parameters on the stack in
opposite order.
Using a special calling convention allows frontends to keep the sret
parameter first, which avoids breaking lots of assumptions in LLVM and
Clang.
Fixes PR15768 with the corresponding change in Clang.
Reviewers: ributzka, majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2663
llvm-svn: 200561
Summary:
The only current use of this flag is to mark the alloca as dynamic, even
if its in the entry block. The stack adjustment for the alloca can
never be folded into the prologue because the call may clear it and it
has to be allocated at the top of the stack.
Reviewers: majnemer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2571
llvm-svn: 199525
This patch adds two new target-independent calling conventions for runtime
calls - PreserveMost and PreserveAll.
The target-specific implementation for X86-64 is defined as following:
- Arguments are passed as for the default C calling convention
- The same applies for the return value(s)
- PreserveMost preserves all GPRs - except R11
- PreserveAll preserves all GPRs and all XMMs/YMMs - except R11
Reviewed by Lang and Philip
llvm-svn: 199508
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
llvm-svn: 197645
Add a helper function getDebugInfoVersionFromModule to return the debug info
version number for a module.
"Verifier/module-flags-1.ll" checks for verification errors.
It will seg fault when calling getDebugInfoVersionFromModule because of the
incorrect format for module flags in the testing case. We make
getModuleFlagsMetadata more robust by checking for error conditions.
PR17982
llvm-svn: 196158
The object files we support use null terminated strings, so there is no way to
support these.
This patch adds an assert to catch bad API use and an error check in the .ll
parser.
llvm-svn: 195155
The idea of the AnyReg Calling Convention is to provide the call arguments in
registers, but not to force them to be placed in a paticular order into a
specified set of registers. Instead it is up tp the register allocator to assign
any register as it sees fit. The same applies to the return value (if
applicable).
Differential Revision: http://llvm-reviews.chandlerc.com/D2009
Reviewed by Andy
llvm-svn: 194293
linkonce_odr_auto_hide was in incomplete attempt to implement a way
for the linker to hide symbols that are known to be available in every
TU and whose addresses are not relevant for a particular DSO.
It was redundant in that it all its uses are equivalent to
linkonce_odr+unnamed_addr. Unlike those, it has never been connected
to clang or llvm's optimizers, so it was effectively dead.
Given that nothing produces it, this patch just nukes it
(other than the llvm-c enum value).
llvm-svn: 193865
Major steps include:
1). introduces a not-addr-taken bit-field in GlobalVariable
2). GlobalOpt pass sets "not-address-taken" if it proves a global varirable
dosen't have its address taken.
3). AA use this info for disambiguation.
llvm-svn: 193251
This function attribute indicates that the function is not optimized
by any optimization or code generator passes with the
exception of interprocedural optimization passes.
llvm-svn: 189101
Summary:
This patch adds explicit calling convention types for the Win64 and
System V/x86-64 ABIs. This allows code to override the default, and use
the Win64 convention on a target that wants to use SysV (and
vice-versa). This is needed to implement the `ms_abi` and `sysv_abi` GNU
attributes.
Reviewers:
CC:
llvm-svn: 186144
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176075
The 'nobuiltin' attribute is applied to call sites to indicate that LLVM should
not treat the callee function as a built-in function. I.e., it shouldn't try to
replace that function with different code.
llvm-svn: 175835
The original syntax for the attribute groups was ambiguous. For example:
declare void @foo() #1#0 = attributes { noinline }
The '#0' would be parsed as an attribute reference for '@foo' and not as a
top-level entity. In order to continue forward while waiting for a decision on
what the correct syntax is, I'm changing it to this instead:
declare void @foo() #1
attributes #0 = { noinline }
Repeat: This is TEMPORARY until we decide what the correct syntax should be.
llvm-svn: 174813
Attribute references are of this form:
define void @foo() #0#1#2 { ... }
Parse them for function attributes. If there's more than one reference, then
they are merged together.
llvm-svn: 174697
Attribute groups are of the form:
#0 = attributes { noinline "no-sse" "cpu"="cortex-a8" alignstack=4 }
Target-dependent attributes are represented as strings. Attributes can have
optional values associated with them. E.g., the "cpu" attribute has the value
"cortex-a8".
Target-independent attributes are listed as enums inside the attribute classes.
Multiple attribute groups can be referenced by the same object. In that case,
the attributes are merged together.
llvm-svn: 174493
Several places were still treating the Attribute object as respresenting
multiple attributes. Those places now use the AttributeSet to represent
multiple attributes.
llvm-svn: 174003
In the future, AttributeWithIndex won't be used anymore. Besides, it exposes the
internals of the AttributeSet to outside users, which isn't goodness.
llvm-svn: 173603
SSPStrong applies a heuristic to insert stack protectors in these situations:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
This patch implements the SSPString attribute to be equivalent to
SSPRequired. This will change in a subsequent patch.
llvm-svn: 173230
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
llvm-svn: 173138
bogus comparison operands to default to eq/oeq. Fix that, fix a couple of
tests that accidentally passed and test for bogus comparison opeartors
explicitly.
llvm-svn: 171733
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Similarly inlining of the function is inhibited, if that would duplicate the call (in particular inlining is still allowed when there is only one callsite and the function has internal linkage).
llvm-svn: 170704
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Added in the ability to read LLVM IR text that contains fast-math flags as a sequence of capital letters separated by spaces in any order. Added in the printing of the fast-math flags in a canonical order, and don't print the other flags when 'fast' is specified, as 'fast' implies all the others.
llvm-svn: 168645
When code deletes the context, the AttributeImpls that the AttrListPtr points to
are now invalid. Therefore, instead of keeping a separate managed static for the
AttrListPtrs that's reference counted, move it into the LLVMContext and delete
it when deleting the AttributeImpls.
llvm-svn: 168354
Before, the parser would assert on the following code:
@a2 = global i8 addrspace(1)* @a
@a = addrspace(1) global i8 0
because the type of @a was "i8*" instead of "i8 addrspace(1)*" when parsing
the initializer for @a2.
llvm-svn: 168197
Previously in a vector of pointers, the pointer couldn't be any pointer type,
it had to be a pointer to an integer or floating point type. This is a hassle
for dragonegg because the GCC vectorizer happily produces vectors of pointers
where the pointer is a pointer to a struct or whatever. Vector getelementptr
was restricted to just one index, but now that vectors of pointers can have
any pointer type it is more natural to allow arbitrary vector getelementptrs.
There is however the issue of struct GEPs, where if each lane chose different
struct fields then from that point on each lane will be working down into
unrelated types. This seems like too much pain for too little gain, so when
you have a vector struct index all the elements are required to be the same.
llvm-svn: 167828
Patch by Quentin Colombet <qcolombet@apple.com>
Original description:
"""
The attached patch is the first step to have a better control on Oz related optimizations.
The Oz optimization level focuses on code size, thus I propose to add an attribute called ForceSizeOpt.
"""
llvm-svn: 166422
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
llvm-svn: 165917
value but later turns out to be a function.
Unfortunately, we can't fold tests into a single file because we only get one
error out of llvm-as.
llvm-svn: 165680
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
llvm-svn: 162114
This new attribute is intended to be used by the backend to determine how
the inline asm string should be parsed/printed. This patch adds the
ia_nsdialect attribute and also adds a test case to ensure the IR is
correctly parsed, but there is no functional change at this time.
The standard dialect is assumed to be AT&T. Therefore, this attribute
should only be added to MS-style inline assembly statements, which use
the Intel dialect. If we ever support more dialects we'll need to
add additional state to the attribute.
llvm-svn: 161641
This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
llvm-svn: 159077
I'm not sure it's really worth expressing this as a range rather than 3 specific equalities, but it doesn't seem fundamentally wrong either.
llvm-svn: 157398
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
llvm-svn: 148553
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
llvm-svn: 147861
Invalid strings in asm files will result in parse errors. Invalid string literals passed to TargetData constructors will result in an assertion.
llvm-svn: 142288
of the instruction.
Note that this change affects the existing non-atomic load and store
instructions; the parser now accepts both forms, and the change is noted
in the release notes.
llvm-svn: 137527
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
llvm-svn: 137501
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
llvm-svn: 136404
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
top level type without a specified number. This asmprinter has never
generated this, as you can tell by no tests being updated. It also isn't
documented.
llvm-svn: 133368
the old malloc/free instructions, and for 'sext' and 'zext' as function
attributes (they are spelled signext/zeroext now), and support for result
value attributes being specified after a function.
Additionally, diagnose invalid attributes on functions with an error message
instead of an abort in the verifier.
llvm-svn: 133229
optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
llvm-svn: 133080
Unfortunately we can't follow what the rest of the language does (wrapping it
in double-quotes) because that would cause an ambiguity with metadata strings,
so instead we escape any unusual characters with \xx escaping.
llvm-svn: 133050
--- Reverse-merging r129235 into '.':
D test/Feature/bb_attrs.ll
U include/llvm/BasicBlock.h
U include/llvm/Bitcode/LLVMBitCodes.h
U lib/VMCore/AsmWriter.cpp
U lib/VMCore/BasicBlock.cpp
U lib/AsmParser/LLParser.cpp
U lib/AsmParser/LLLexer.cpp
U lib/AsmParser/LLToken.h
U lib/Bitcode/Reader/BitcodeReader.cpp
U lib/Bitcode/Writer/BitcodeWriter.cpp
llvm-svn: 129259
* Add a "landing pad" attribute to the BasicBlock.
* Modify the bitcode reader and writer to handle said attribute.
Later: The verifier will ensure that the landing pad attribute is used in the
appropriate manner. I.e., not applied to the entry block, and applied only to
basic blocks that are branched to via a `dispatch' instruction.
(This is a work-in-progress.)
llvm-svn: 129235
uses.
The result produced by the streamer is used to give the linker more accurate
information and to add to llvm.compiler.used. The second improvement removes
the need for the user to add __attribute__((used)) to functions only used in
inline asm. The first one lets us build firefox with LTO on Darwin :-)
llvm-svn: 126830