Commit Graph

10 Commits

Author SHA1 Message Date
Petr Hosek e28fca29fe Revert "[IRBuilder] Fold consistently for or/and whether constant is LHS or RHS"
This reverts commit r365260 which broke the following tests:

    Clang :: CodeGenCXX/cfi-mfcall.cpp
    Clang :: CodeGenObjC/ubsan-nullability.m
    LLVM :: Transforms/LoopVectorize/AArch64/pr36032.ll

llvm-svn: 365284
2019-07-07 22:12:01 +00:00
Philip Reames 9812668d77 [IRBuilder] Fold consistently for or/and whether constant is LHS or RHS
Without this, we have the unfortunate property that tests are dependent on the order of operads passed the CreateOr and CreateAnd functions.  In actual usage, we'd promptly optimize them away, but it made tests slightly more verbose than they should have been.

llvm-svn: 365260
2019-07-06 04:28:00 +00:00
Philip Reames 92a7177e6b [LoopPredication] Allow predication of loop invariant computations (within the loop)
The purpose of this patch is to eliminate a pass ordering dependence between LoopPredication and LICM. To understand the purpose, consider the following snippet of code inside some loop 'L' with IV 'i'
A = _a.length;
guard (i < A)
a = _a[i]
B = _b.length;
guard (i < B);
b = _b[i];
...
Z = _z.length;
guard (i < Z)
z = _z[i]
accum += a + b + ... + z;

Today, we need LICM to hoist the length loads, LoopPredication to make the guards loop invariant, and TrivialUnswitch to eliminate the loop invariant guard to establish must execute for the next length load. Today, if we can't prove speculation safety, we'd have to iterate these three passes 26 times to reduce this example down to the minimal form.

Using the fact that the array lengths are known to be invariant, we can short circuit this iteration. By forming the loop invariant form of all the guards at once, we remove the need for LoopPredication from the iterative cycle. At the moment, we'd still have to iterate LICM and TrivialUnswitch; we'll leave that part for later.

As a secondary benefit, this allows LoopPred to expose peeling oppurtunities in a much more obvious manner.  See the udiv test changes as an example.  If the udiv was not hoistable (i.e. we couldn't prove speculation safety) this would be an example where peeling becomes obviously profitable whereas it wasn't before.

A couple of subtleties in the implementation:
- SCEV's isSafeToExpand guarantees speculation safety (i.e. let's us expand at a new point).  It is not a precondition for expansion if we know the SCEV corresponds to a Value which dominates the requested expansion point.
- SCEV's isLoopInvariant returns true for expressions which compute the same value across all iterations executed, regardless of where the original Value is located.  (i.e. it can be in the loop)  This implies we have a speculation burden to prove before expanding them outside loops.
- invariant_loads and AA->pointsToConstantMemory are two cases that SCEV currently does not handle, but meets the SCEV definition of invariance.  I plan to sink this part into SCEV once this has baked for a bit.

Differential Revision: https://reviews.llvm.org/D60093

llvm-svn: 358684
2019-04-18 16:33:17 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Philip Reames c44b68e2b7 [Tests] Add branch_weights to latches so that test is not effected by future profitability patch to LoopPredication
llvm-svn: 358506
2019-04-16 16:32:59 +00:00
Philip Reames d3d5d76a7b [WideableCond] Fix a nasty bug in detection of "explicit guards"
The code was failing to actually check for the presence of the call to widenable_condition.  The whole point of specifying the widenable_condition intrinsic was allowing widening transforms.  A normal branch is not widenable.  A normal branch leading to a deopt is not widenable (in general).

I added a test case via LoopPredication, but GuardWidening has an analogous bug.  Those are the only two passes actually using this utility just yet. Noticed while working on LoopPredication for non-widenable branches; POC in D60111.

llvm-svn: 357493
2019-04-02 16:51:43 +00:00
Philip Reames d109e2a7c3 [LoopPred] Delete the old condition expressions if unused
LoopPredication was replacing the original condition, but leaving the instructions to compute the old conditions around.  This would get cleaned up by other passes of course, but we might as well do it eagerly.  That also makes the test output less confusing.  

llvm-svn: 357406
2019-04-01 16:05:15 +00:00
Philip Reames 7eee62b5d4 [Tests] Autogen all the LoopPredication tests
I'm about to make some changes to the pass which cause widespread - but uninteresting - test diffs.  Prepare the tests for easy updating.

llvm-svn: 357404
2019-04-01 15:35:30 +00:00
Max Kazantsev feb475f4cf [LoopPredication] Support guards expressed as branches by widenable condition
This patch adds support of guards expressed as branches by widenable
conditions in Loop Predication.

Differential Revision: https://reviews.llvm.org/D56081
Reviewed By: reames

llvm-svn: 351805
2019-01-22 11:49:06 +00:00