The docs and help text for --show-parents and --show-children were a bit
inconsistent. The help text claimed they had an effect when "=<offset>"
was used, whereas the doc said it had an effect when "--find" or
"--name" were used. This change changes the doc to mention "=<offset>"
and removes this reference from the help text, to avoid having a very
long description in the help text (it still says "when selectively
printing entries").
Reviewed by: JDevlieghere, aprantl
Differential Revision: https://reviews.llvm.org/D63275
llvm-svn: 363380
We were hardcoding the final section type for sections that
are usually implicit. The patch fixes that.
This also fixes a few issues in existent test cases and removes
one precompiled object.
Differential revision: https://reviews.llvm.org/D63267
llvm-svn: 363377
If dynamic table is missing, output "dynamic strtab not found'. If the index is
out of range, output "Invalid Offset<..>".
https://bugs.llvm.org/show_bug.cgi?id=40807
Reviewed by: jhenderson, grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D63084
Patch by Yuanfang Chen.
llvm-svn: 363374
Initial commit of a new pass to create vector predication blocks, called VPT
blocks, that are supported by the Armv8.1-M MVE architecture.
This is a first naive implementation. I.e., for 2 consecutive predicated
instructions I1 and I2, for example, it will generate 2 VPT blocks:
VPST
I1
VPST
I2
A more optimal implementation would obviously put instructions in the same VPT
block when they are predicated on the same condition and when it is allowed to
do this:
VPTT
I1
I2
We will address this optimisation with follow up patches when the groundwork is
in. Creating VPT Blocks is very similar to IT Blocks, which is the reason I
added this to Thumb2ITBlocks.cpp. This allows reuse of the def use analysis
that we need for the more optimal implementation.
VPT blocks cannot be nested in IT blocks, and vice versa, and so these 2 passes
cannot interact with each other. Instructions allowed in VPT blocks must
be MVE instructions that are marked as VPT compatible.
Differential Revision: https://reviews.llvm.org/D63247
llvm-svn: 363370
Despite the fact that .strtab is non-allocatable,
there is no reason to disallow setting the custom address
for it.
The patch also adds a test case showing we can set any address
we want for other implicit sections.
Differential revision: https://reviews.llvm.org/D63137
llvm-svn: 363368
With this patch we get ability to set any flags we want
for implicit sections defined in YAML.
Differential revision: https://reviews.llvm.org/D63136
llvm-svn: 363367
InsertBinop now accepts NoWrapFlags, so pass them through when
expanding a simple add expression.
This is the first re-commit of the functional changes from rL362687,
which was previously reverted.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 363364
Summary: Tidied up errors during command line parsing to be more consistent with the rest of llvm-objcopy errors.
Reviewers: jhenderson, rupprecht, espindola, alexshap
Reviewed By: jhenderson, rupprecht
Subscribers: emaste, arichardson, MaskRay, llvm-commits, jakehehrlich
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62973
llvm-svn: 363350
This is consistent with GCC's behavior (which is the defacto standard
for pubnames). Though I find the presence of enumerators from enum
classes to be a bit confusing, possibly a bug on GCC's end (since they
can't be named unqualified, unlike the other names - and names nested in
classes don't go in pubnames, for instance - presumably because one must
name the class first & that's enough to limit the scope of the search)
llvm-svn: 363349
It looks like an older version of gcc can't figure out that it needs to
move a unique_ptr while implicitly constructing an Expected object.
llvm-svn: 363342
Summary: AFAIK, the "sparc" target is big endian and the target for 32-bit little-endian SPARC is denoted as "sparcel". This patch fixes the endianness of "sparc" target and adds "sparcel" target for 32-bit little-endian SPARC.
Reviewers: espindola, alexshap, rupprecht, jhenderson
Reviewed By: jhenderson
Subscribers: jyknight, emaste, arichardson, fedor.sergeev, jakehehrlich, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63251
llvm-svn: 363336
Summary:
Before it was using the fully qualified name only for static data members.
Now it does for all variable names to match MSVC.
Reviewers: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63012
llvm-svn: 363335
The only caller of SymbolizableObjectFile::create passes a non-null
DebugInfoContext and asserts that they do so. Move the assert into
SymbolizableObjectFile::create and remove null checks.
Differential Revision: https://reviews.llvm.org/D63298
llvm-svn: 363334
Constants, including G_GLOBAL_VALUE, are all emitted into the entry block which
lets us use the vreg def assuming it dominates all other users. However, it can
cause jumpy debug behaviour since the DebugLoc attached to these MIs are from
a user instruction that could be in a different block.
Fixes PR40887.
Differential Revision: https://reviews.llvm.org/D63286
llvm-svn: 363331
Merging the two bits shrinks the context table from 16384 bytes to 8192 bytes.
Remove the ATTRIBUTE_BITS macro and just create an enum directly. Then fix the ATTR_max define to be 8192 to reflect the table size so we stop hardcoding it separately.
llvm-svn: 363330
This was exposed by PowerPC target enablement.
In ScheduleDAG, if we haven't seen any uses in this scheduling region,
we will create a dependence edge to ExitSU to model the live-out latency.
This is required for vreg defs with no in-region use, and prefetches with
no vreg def.
When we build NodeOrder in Scheduler, we ignore these boundary nodes.
However, when we check Succs in checkValidNodeOrder, we did not skip
them, so we still assume all the nodes have been sorted and in order in
Indices array. So when we call lower_bound() for ExitSU, it will return
Indices.end(), causing memory issues in following Node access.
Differential Revision: https://reviews.llvm.org/D63282
llvm-svn: 363329
* Add a common function to setup opt-remarks
* Rename common options to the same names
* Add error types to distinguish between file errors and regex errors
llvm-svn: 363328
Support loading code coverage data from regular archives, thin archives,
and from MachO universal binaries which contain archives.
Testing: check-llvm, check-profile (with {A,UB}San enabled)
rdar://51538999
Differential Revision: https://reviews.llvm.org/D63232
llvm-svn: 363325
notifyResolved/notifyEmitted.
The 'notify' prefix better describes what these methods do: they update the JIT
symbol states and notify any pending queries that the 'resolved' and 'emitted'
states have been reached (rather than actually performing the resolution or
emission themselves). Since new states are going to be introduced in the near
future (to track symbol registration/initialization) it's worth changing the
convention pre-emptively to avoid further confusion.
llvm-svn: 363322
I find the current documentation of poison somewhat confusing,
mainly because its use of "undefined behavior" doesn't seem to
align with our usual interpretation (of immediate UB). Especially
the sentence "any instruction that has a dependence on a poison
value has undefined behavior" is very confusing.
Clarify poison semantics by:
* Replacing the introductory paragraph with the standard rationale
for having poison values.
* Spelling out that instructions depending on poison return poison.
* Spelling out how we go from a poison value to immediate undefined
behavior and give the two examples we currently use in ValueTracking.
* Spelling out that side effects depending on poison are UB.
Differential Revision: https://reviews.llvm.org/D63044
llvm-svn: 363320
Also add baseline tests to show effect of later patches.
There were a couple of regressions here that were never caught,
but my patch set that this is a preparation to will fix them.
This is the third attempt to land this patch.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363319
I recently got this wrong (again), and I'm sure I'm not the only one. Put a comment in the logical place someone would look to "fix" the obvious "missed optimization" which arrises based on the common misunderstanding. Hopefully, this will save others time. :)
llvm-svn: 363318
Summary:
This test fails to link shared libraries because tries to run
a copied version of clang-check to see if the mock version of libcxx
in the same directory can be loaded dynamically. Since the test is
specifically designed not to look in the default just-built lib
directory, it must be disabled when building with
BUILD_SHARED_LIBS=ON.
Currently only disabling it on Darwin and basing it on the
enable_shared flag.
Reviewed By: ilya-biryukov
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61697
llvm-svn: 363298
As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop. A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.
llvm-svn: 363293
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.
The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.
As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.
(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)
Differential Revision: https://reviews.llvm.org/D62939
llvm-svn: 363289
Add an AssumptionCache callback to the InlineFuntionInfo used for the
AlwaysInlinerPass to match codegen of the AlwaysInlinerLegacyPass to generate
llvm.assume. This fixes CodeGen/builtin-movdir.c when new PM is enabled by
default.
Differential Revision: https://reviews.llvm.org/D63170
llvm-svn: 363287
Summary:
I found the following case having tail blocks with no successors merging opportunities after block placement.
Before block placement:
bb0:
...
bne a0, 0, bb2:
bb1:
mv a0, 1
ret
bb2:
...
bb3:
mv a0, 1
ret
bb4:
mv a0, -1
ret
The conditional branch bne in bb0 is opposite to beq.
After block placement:
bb0:
...
beq a0, 0, bb1
bb2:
...
bb4:
mv a0, -1
ret
bb1:
mv a0, 1
ret
bb3:
mv a0, 1
ret
After block placement, that appears new tail merging opportunity, bb1 and bb3 can be merged as one block. So the conditional constraint for merging tail blocks with no successors should be removed. In my experiment for RISC-V, it decreases code size.
Author of original patch: Jim Lin
Reviewers: haicheng, aheejin, craig.topper, rnk, RKSimon, Jim, dmgreen
Reviewed By: Jim, dmgreen
Subscribers: xbolva00, dschuff, javed.absar, sbc100, jgravelle-google, aheejin, kito-cheng, dmgreen, PkmX, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54411
llvm-svn: 363284
Summary:
The logic in EarlyCSE that looks through 'not' operations in the
predicate recognizes e.g. that `select (not (cmp sgt X, Y)), X, Y` is
equivalent to `select (cmp sgt X, Y), Y, X`. Without this change,
however, only the latter is recognized as a form of `smin X, Y`, so the
two expressions receive different hash codes. This leads to missed
optimization opportunities when the quadratic probing for the two hashes
doesn't happen to collide, and assertion failures when probing doesn't
collide on insertion but does collide on a subsequent table grow
operation.
This change inverts the order of some of the pattern matching, checking
first for the optional `not` and then for the min/max/abs patterns, so
that e.g. both expressions above are recognized as a form of `smin X, Y`.
It also adds an assertion to isEqual verifying that it implies equal
hash codes; this fires when there's a collision during insertion, not
just grow, and so will make it easier to notice if these functions fall
out of sync again. A new flag --earlycse-debug-hash is added which can
be used when changing the hash function; it forces hash collisions so
that any pair of values inserted which compare as equal but hash
differently will be caught by the isEqual assertion.
Reviewers: spatel, nikic
Reviewed By: spatel, nikic
Subscribers: lebedev.ri, arsenm, craig.topper, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62644
llvm-svn: 363274
Previously it copied over MachineMemOperands verbatim which caused MOV32rm to have store flags set, and MOV32mr to have load flags set. This fixes some assertions being thrown with EXPENSIVE_CHECKS on.
Committed on behalf of @luke (Luke Lau)
Differential Revision: https://reviews.llvm.org/D62726
llvm-svn: 363268
Summary:
Relate bug: https://bugs.llvm.org/show_bug.cgi?id=37472
The shrink wrapping pass prematurally restores the stack, at a point where the stack might still be accessed.
Taking an exception can cause the stack to be corrupted.
As a first approach, this patch is overly conservative, assuming that any instruction that may load or store could access
the stack.
Reviewers: dmgreen, qcolombet
Reviewed By: qcolombet
Subscribers: simpal01, efriedma, eli.friedman, javed.absar, llvm-commits, eugenis, chill, carwil, thegameg
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63152
llvm-svn: 363265
This fixes https://bugs.llvm.org/show_bug.cgi?id=42185.
llvm-dwarfdump's documentation was missing a number of options and other
behaviours. This change tries to fix up the documentation by adding
these missing items.
Reviewed by: JDevlieghere
Differential Revision: https://reviews.llvm.org/D63217
llvm-svn: 363264
This commit prepares the way to start adding the main collection of
MVE instructions, which operate on the 128-bit vector registers.
The most obvious thing that's needed, and the simplest, is to add the
MQPR register class, which is like the existing QPR except that it has
fewer registers in it.
The more complicated part: MVE defines a system of vector predication,
in which instructions operating on 128-bit vector registers can be
constrained to operate on only a subset of the lanes, using a system
of prefix instructions similar to the existing Thumb IT, in that you
have one prefix instruction which designates up to 4 following
instructions as subject to predication, and within that sequence, the
predicate can be inverted by means of T/E suffixes ('Then' / 'Else').
To support instructions of this type, we've added two new Tablegen
classes `vpred_n` and `vpred_r` for standard clusters of MC operands
to add to a predicated instruction. Both include a flag indicating how
the instruction is predicated at all (options are T, E and 'not
predicated'), and an input register field for the register controlling
the set of active lanes. They differ from each other in that `vpred_r`
also includes an input operand for the previous value of the output
register, for instructions that leave inactive lanes unchanged.
`vpred_n` lacks that extra operand; it will be used for instructions
that don't preserve inactive lanes in their output register (either
because inactive lanes are zeroed, as the MVE load instructions do, or
because the output register isn't a vector at all).
This commit also adds the family of prefix instructions themselves
(VPT / VPST), and all the machinery needed to work with them in
assembly and disassembly (e.g. generating the 't' and 'e' mnemonic
suffixes on disassembled instructions within a predicated block)
I've added a couple of demo instructions that derive from the new
Tablegen base classes and use those two operand clusters. The bulk of
the vector instructions will come in followup commits small enough to
be manageable. (One exception is that I've added the full version of
`isMnemonicVPTPredicable` in the AsmParser, because it seemed
pointless to carefully split it up.)
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62669
llvm-svn: 363258
This patch makes the LiveDebugValues pass consider fragments when propagating
DBG_VALUE insts between blocks, fixing PR41979. Fragment info for a variable
location is added to the open-ranges key, which allows distinct fragments to be
tracked separately. To handle overlapping fragments things become slightly
funkier. To avoid excessive searching for overlaps in the data-flow part of
LiveDebugValues, this patch:
* Pre-computes pairings of fragments that overlap, for each DILocalVariable
* During data-flow, whenever something happens that causes an open range to
be terminated (via erase), any fragments pre-determined to overlap are
also terminated.
The effect of which is that when encountering a DBG_VALUE fragment that
overlaps others, the overlapped fragments do not get propagated to other
blocks. We still rely on later location-list building to correctly handle
overlapping fragments within blocks.
It's unclear whether a mixture of DBG_VALUEs with and without fragmented
expressions are legitimate. To avoid suprises, this patch interprets a
DBG_VALUE with no fragment as overlapping any DBG_VALUE _with_ a fragment.
Differential Revision: https://reviews.llvm.org/D62904
llvm-svn: 363256
Since the DebugLocEntry::Value is used as part of DwarfDebug and
DebugLocEntry make it as the separate class.
Reviewers: aprantl, dstenb
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D63213
llvm-svn: 363246
We aim to ignore changes in variable locations during the prologue and
epilogue of functions, to avoid using space documenting location changes
that aren't visible. However in D61940 / r362951 this got ripped out as
the previous implementation was unsound.
Instead, use the FrameDestroy flag to identify when we're in the epilogue
of a function, and ignore variable location changes accordingly. This fits
in with existing code that examines the FrameSetup flag.
Some variable locations get shuffled in modified tests as they now cover
greater ranges, which is what would be expected. Some additional
single-location variables are generated too. Two tests are un-xfailed,
they were only xfailed due to r362951 deleting functionality they depended
on.
Apparently some out-of-tree backends don't accurately maintain FrameDestroy
flags -- if you're an out-of-tree maintainer and see changes in variable
locations disappear due to a faulty FrameDestroy flag, it's safe to back
this change out. The impact is just slightly more debug info than necessary.
Differential Revision: https://reviews.llvm.org/D62314
llvm-svn: 363245
During assembly, the mask operand to an IT instruction (storing the
sequence of T/E for 'Then' and 'Else') is parsed out of the mnemonic
into a representation that encodes 'Then' and 'Else' in the same way
regardless of the condition code. At some point during encoding it has
to be converted into the instruction encoding used in the
architecture, in which the mask encodes a sequence of replacement
low-order bits for the condition code, so that which bit value means
'then' and which 'else' depends on whether the original condition code
had its low bit set.
Previously, that transformation was done by processInstruction(), half
way through assembly. So an MCOperand storing an IT mask would
sometimes store it in one format, and sometimes in the other,
depending on where in the assembly pipeline you were. You can see this
in diagnostics from `llvm-mc -debug -triple=thumbv8a -show-inst`, for
example: if you give it an instruction such as `itete eq`, you'd see
an `<MCOperand Imm:5>` in a diagnostic become `<MCOperand Imm:11>` in
the final output.
Having the same data structure store values with time-dependent
semantics is confusing already, and it will get more confusing when we
introduce the MVE VPT instruction which reuses the Then/Else bitmask
idea in a different context. So I'm refactoring: now, all `ARMOperand`
and `MCOperand` representations of an IT mask work exactly the same
way, namely, 0 means 'Then' and 1 means 'Else', regardless of what
original predicate is being referred to. The architectural encoding of
IT that depends on the original condition is now constructed at the
point when we turn the `MCOperand` into the final instruction bit
pattern, and decoded similarly in the disassembler.
The previous condition-independent parse-time format used 0 for Else
and 1 for Then. I've taken the opportunity to flip the sense of it
while I'm changing all of this anyway, because it seems to me more
natural to use 0 for 'leave the starting condition unchanged' and 1
for 'invert it', as if those bits were an XOR mask.
Reviewers: ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63219
llvm-svn: 363244
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
TTI should report that it's not profitable to generate a hardware loop
if it, or one of its child loops, has already been converted.
Differential Revision: https://reviews.llvm.org/D63212
llvm-svn: 363234
Extend the mechanism to overload intrinsic arguments by using either
backward or forward references to the overloadable arguments.
In for example:
def int_something : Intrinsic<[LLVMPointerToElt<0>],
[llvm_anyvector_ty], []>;
LLVMPointerToElt<0> is a forward reference to the overloadable operand
of type 'llvm_anyvector_ty' and would allow intrinsics such as:
declare i32* @llvm.something.v4i32(<4 x i32>);
declare i64* @llvm.something.v2i64(<2 x i64>);
where the result pointer type is deduced from the element type of the
first argument.
If the returned pointer is not a pointer to the element type, LLVM will
give an error:
Intrinsic has incorrect return type!
i64* (<4 x i32>)* @llvm.something.v4i32
Reviewers: RKSimon, arsenm, rnk, greened
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62995
llvm-svn: 363233
$noreg was being used way more than it should have. We also had
xmm registers in addressing modes.
Mostly found by hacking the machine verifier to do some stricter
checking that happened to work for this test, but not sure if
generally applicable for other tests or other targets.
llvm-svn: 363231
This reverts 363226 and 363227, both NFC intended
I swear I fixed the test case that is failing, and ran
the tests, but I will look into it again.
llvm-svn: 363229
and replace with an equilivent countTrailingZeros.
GCD is much more expensive than this, with repeated division.
This depends on D60823
Differential Revision: https://reviews.llvm.org/D61151
llvm-svn: 363227
Also add baseline tests to show effect of later patches.
There were a couple of regressions here that were never caught,
but my patch set that this is a preparation to will fix them.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363226
see if my changes change anything
Also add baseline tests to show effect of later patches.
Differential Revision: https://reviews.llvm.org/D61150
llvm-svn: 363222
Summary:
- Remove redundant initializations from pass constructors that were
already being initialized by LLVMInitializeX86Target().
- Add initialization function for the FPS pass.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63218
llvm-svn: 363221
We have observed some failures with internal builds with this revision.
- Performance regressions:
- llvm's SingleSource/Misc evalloop shows performance regressions (although these may be red herrings).
- Benchmarks for Abseil's SwissTable.
- Correctness:
- Failures for particular libicu tests when building the Google AppEngine SDK (for PHP).
hwennborg has already been notified, and is aware of reproducer failures.
llvm-svn: 363220
Summary:
This is useful for scenarios where Prologue was directly used and DWARF
5 awareness is required. The current alternative would be to either
duplicate the logic in getFileNameEntry, or to use getFileNameByIndex.
The latter isn't quite an in-place replacement - it performs some
processing, and it produces a string instead of a StringRef, meaning
the caller needs to handle its lifetime.
Reviewers: tamur, dblaikie, JDevlieghere
Reviewed By: tamur, JDevlieghere
Subscribers: aprantl, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D63228
llvm-svn: 363210
Filter out irrelevant options
New output:
OVERVIEW: llvm extractor
USAGE: llvm-extract [options] <input bitcode file>
OPTIONS:
Generic Options:
--help - Display available options (--help-hidden for more)
--help-list - Display list of available options (--help-list-hidden for more)
--version - Display the version of this program
llvm-extract Options:
--alias=<alias> - Specify alias to extract
--bb=<function:bb> - Specify <function, basic block> pairs to extract
--delete - Delete specified Globals from Module
-f - Enable binary output on terminals
--func=<function> - Specify function to extract
--glob=<global> - Specify global to extract
-o=<filename> - Specify output filename
--ralias=<ralias> - Specify alias(es) to extract using a regular expression
--recursive - Recursively extract all called functions
--rfunc=<rfunction> - Specify function(s) to extract using a regular expression
--rglob=<rglobal> - Specify global(s) to extract using a regular expression
Differential Revision: https://reviews.llvm.org/D62511
llvm-svn: 363201
Summary:
Use llvm::fouts() as the default stream for outputing. No new stream
should be constructed to output at the same time.
https://bugs.llvm.org/show_bug.cgi?id=42140
Reviewers: jhenderson, grimar, MaskRay, phosek, rupprecht
Reviewed By: rupprecht
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63115
Patch by Yuanfang Chen!
llvm-svn: 363198
The issue addressed in r363180 is more broadly relevant. For the moment, we don't actually get any of these cases because we a) restrict SCEV formation due to SCEExpander needing to preserve LCSSA, and b) don't iterate between loops.
llvm-svn: 363192
Summary: thin-archive.test assumes the Output/<testname> structure that lit creates. Rewrite the test in a way that still tests the same thing (creating via relative path and adding via absolute path) but doesn't assume this specific lit structure, making it possible to run in a lit emulator.
Reviewers: gbreynoo
Reviewed By: gbreynoo
Subscribers: llvm-commits, bkramer
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62930
llvm-svn: 363189
Add support for s.d instruction for Mips1 which expands into two swc1
instructions.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D63199
llvm-svn: 363184
The information for -archs flag is added to llvm-lipo.rst.
Patch by Anusha Basana <anusha.basana@gmail.com>
Differential Revision: https://reviews.llvm.org/D63100
llvm-svn: 363182
SCEV does not propagate arguments through one-input Phis so as to make it easy for the SCEV expander (and related code) to preserve LCSSA. It's not entirely clear this restriction is neccessary, but for the moment it exists. For this reason, we don't analyze single-entry phi inputs. However it is possible that when an this input leaves the loop through LCSSA Phi, it is a provable constant. Missing that results in an order of optimization issue in loop exit value rewriting where we miss some oppurtunities based on order in which we visit sibling loops.
This patch teaches computeSCEVAtScope about this case. We can generalize it later, but so far we can only replace LCSSA Phis with their constant loop-exiting values. We should probably also add similiar logic directly in the SCEV construction path itself.
Patch by: mkazantsev (with revised commit message by me)
Differential Revision: https://reviews.llvm.org/D58113
llvm-svn: 363180
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
This was using its own, outdated list of possible captures. This was
at minimum not catching cmpxchg and addrspacecast captures.
One change is now any volatile access is treated as capturing. The
test coverage for this pass is quite inadequate, but this required
removing volatile in the lifetime capture test.
Also fixes some infrastructure issues to allow running just the IR
pass.
Fixes bug 42238.
llvm-svn: 363169
Without this fix clang 3.6 complains with:
../lib/Target/ARM/ARMAsmPrinter.cpp:1473:18: error: variable 'BranchTarget' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
} else if (MI->getOperand(1).isSymbol()) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1479:22: note: uninitialized use occurs here
MCInst.addExpr(BranchTarget);
^~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1473:14: note: remove the 'if' if its condition is always true
} else if (MI->getOperand(1).isSymbol()) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1465:33: note: initialize the variable 'BranchTarget' to silence this warning
const MCExpr *BranchTarget;
^
= nullptr
1 error generated.
Discussed here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190610/661417.html
llvm-svn: 363166
This changes the standalone pass only. Arguably the utility class
itself should assert there are no convergent calls. However, a target
pass with additional context may still be able to version a loop if
all of the dynamic conditions are sufficiently uniform.
llvm-svn: 363165
Summary:
Fix hoisting to basic block which are not legal for hoisting cause
it can be terminated by exception or it is return block.
Reviewers: john.brawn, RKSimon, MatzeB
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63148
llvm-svn: 363164
This case is slightly tricky, because loop distribution should be
allowed in some cases, and not others. As long as runtime dependency
checks don't need to be introduced, this should be OK. This is further
complicated by the fact that LoopDistribute partially ignores if LAA
says that vectorization is safe, and then does its own runtime pointer
legality checks.
Note this pass still does not handle noduplicate correctly, as this
should always be forbidden with it. I'm not going to bother trying to
fix it, as it would require more effort and I think noduplicate should
be removed.
https://reviews.llvm.org/D62607
llvm-svn: 363160