have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
llvm-svn: 107079
When an instruction has tied operands and physreg defines, we must take extra
care that the tied operands conflict with neither physreg defs nor uses.
The special treatment is given to inline asm and instructions with tied operands
/ early clobbers and physreg defines.
This fixes PR7509.
llvm-svn: 107043
CopyFromReg nodes for aliasing registers (AX and AL). This confuses the fast
register allocator.
Instead of CopyFromReg(AL), use ExtractSubReg(CopyFromReg(AX), sub_8bit).
This fixes PR7312.
llvm-svn: 106934
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
address requires a register or secondary load to compute
(most PIC modes). This improves "g" constraint handling. 8015842.
The test from 2007 is attempting to test the fix for PR1761,
but since -relocation-model=static doesn't work on Darwin
x86-64, it was not testing what it was supposed to be testing
and was passing erroneously. Fixed to use Linux x86-64.
llvm-svn: 106779
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
llvm-svn: 106748
Measurements show that it does not speed up coalescing, so there is no reason
the keep the added complexity around.
Also clean out some unused methods and static functions.
llvm-svn: 106548
opportunities. For example, this lets it emit this:
movq (%rax), %rcx
addq %rdx, %rcx
instead of this:
movq %rdx, %rcx
addq (%rax), %rcx
in the case where %rdx has subsequent uses. It's the same number
of instructions, and usually the same encoding size on x86, but
it appears faster, and in general, it may allow better scheduling
for the load.
llvm-svn: 106493
use sharing map. The reconcileNewOffset logic already forces a
separate use if the kinds differ, so incorporating the kind in the
key means we can track more sharing opportunities.
More sharing means fewer total uses to track, which means smaller
problem sizes, which means the conservative throttles don't kick
in as often.
llvm-svn: 106396
will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
llvm-svn: 106066
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
llvm-svn: 105998
symbols as declarations in the X86 backend. This would manifest
on darwin x86-32 as errors like this with -fvisibility=hidden:
symbol '__ZNSbIcED1Ev' can not be undefined in a subtraction expression
This fixes PR7353.
llvm-svn: 105954
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
llvm-svn: 105749
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
llvm-svn: 105453
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
llvm-svn: 105228