Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375
Summary:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321234
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
This patch moves formation of LOC-type instructions from (late)
IfConversion to the early if-conversion pass, and in some cases
additionally creates them directly from select instructions
during DAG instruction selection.
To make early if-conversion work, the patch implements the
canInsertSelect / insertSelect callbacks. It also implements
the commuteInstructionImpl and FoldImmediate callbacks to
enable generation of the full range of LOC instructions.
Finally, the patch adds support for all instructions of the
load-store-on-condition-2 facility, which allows using LOC
instructions also for high registers.
Due to the use of the GRX32 register class to enable high registers,
we now also have to handle the cases where there are still no single
hardware instructions (conditional move from a low register to a high
register or vice versa). These are converted back to a branch sequence
after register allocation. Since the expandRAPseudos callback is not
allowed to create new basic blocks, this requires a simple new pass,
modelled after the ARM/AArch64 ExpandPseudos pass.
Overall, this patch causes significantly more LOC-type instructions
to be used, and results in a measurable performance improvement.
llvm-svn: 288028
The name/comment of the third argument to the ScheduleDAGMI constructor
is RemoveKillFlags and not IsPostRA. Only the comments are changed.
Review: A Trick
llvm-svn: 286350
Post-RA sched strategy and scheduling instruction annotations for z196, zEC12
and z13.
This scheduler optimizes decoder grouping and balances processor resources
(including side steering the FPd unit instructions).
The SystemZHazardRecognizer keeps track of the scheduling state, which can
be dumped with -debug-only=misched.
Reviers: Ulrich Weigand, Andrew Trick.
https://reviews.llvm.org/D17260
llvm-svn: 284704
This adds a new SystemZ-specific intrinsic, llvm.s390.tdc.f(32|64|128),
which maps straight to the test data class instructions. A new IR pass
is added to recognize instructions that can be converted to TDC and
perform the necessary replacements.
Differential Revision: http://reviews.llvm.org/D21949
llvm-svn: 275016
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
Return is now considered a predicable instruction, and is converted
to a newly-added CondReturn (which maps to BCR to %r14) instruction by
the if conversion pass.
Also, fused compare-and-branch transform knows about conditional
returns, emitting the proper fused instructions for them.
This transform triggers on a *lot* of tests, hence the huge diffstat.
The changes are mostly jX to br %r14 -> bXr %r14.
Author: koriakin
Differential Revision: http://reviews.llvm.org/D17339
llvm-svn: 265689
SystemZ needs to do its scheduling after branch relaxation, which can
only happen after block placement, and therefore the standard
PostRAScheduler point in the pass sequence is too early.
TargetMachine::targetSchedulesPostRAScheduling() is a new method that
signals on returning true that target will insert the final scheduling
pass on its own.
Reviewed by Hal Finkel
llvm-svn: 255234
Compare elimination extended to recognize load-and-test instructions used
for comparison and eliminate them the same way as with compare instructions.
Test case fp-cmp-05.ll updated to expect optimized results now also for z13.
The order of instruction shortening and compare elimination passes have been
changed so that opcodes do not have to be handled in both passes.
Reviewed by Ulrich Weigand.
llvm-svn: 249666
Summary:
For the moment, TargetMachine::getTargetTriple() still returns a StringRef.
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: ted, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10362
llvm-svn: 239554
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, jfb, rengolin
Differential Revision: http://reviews.llvm.org/D10361
llvm-svn: 239538
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
This the first of a series of patches to add CodeGen support exploiting
the instructions of the z13 vector facility. This patch adds support
for the native integer vector types (v16i8, v8i16, v4i32, v2i64).
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level
(implemented in clang), but also at the LLVM IR level. This is done
by selecting a different DataLayout string depending on whether the
vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236521
This hooks up the TargetTransformInfo machinery for SystemZ,
and provides an implementation of getIntImmCost.
In addition, the patch adds the isLegalICmpImmediate and
isLegalAddImmediate TargetLowering overrides, and updates
a couple of test cases where we now generate slightly
better code.
llvm-svn: 233688
Summary:
I don't know why every singled backend had to redeclare its own DataLayout.
There was a virtual getDataLayout() on the common base TargetMachine, the
default implementation returned nullptr. It was not clear from this that
we could assume at call site that a DataLayout will be available with
each Target.
Now getDataLayout() is no longer virtual and return a pointer to the
DataLayout member of the common base TargetMachine. I plan to turn it into
a reference in a future patch.
The only backend that didn't have a DataLayout previsouly was the CPPBackend.
It now initializes the default DataLayout. This commit is NFC for all the
other backends.
Test Plan: clang+llvm ninja check-all
Reviewers: echristo
Subscribers: jfb, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8243
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231987
The current SystemZ back-end only supports the local-exec TLS access model.
This patch adds all required CodeGen support for the other TLS models, which
means in particular:
- Expand initial-exec TLS accesses by loading TLS offsets from the GOT
using @indntpoff relocations.
- Expand general-dynamic and local-dynamic accesses by generating the
appropriate calls to __tls_get_offset. Note that this routine has
a non-standard ABI and requires loading the GOT pointer into %r12,
so the patch also adds support for the GLOBAL_OFFSET_TABLE ISD node.
- Add a new platform-specific optimization pass to remove redundant
__tls_get_offset calls in the local-dynamic model (modeled after
the corresponding X86 pass).
- Add test cases verifying all access models and optimizations.
llvm-svn: 229654
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
This is the 2nd attempt at this after realizing that PassManager::add() may
actually delete the pass.
llvm-svn: 224059
Previously print+verify passes were added in a very unsystematic way, which is
annoying when debugging as you miss intermediate steps and allows bugs to stay
unnotice when no verification is performed.
To make this change practical I added the possibility to explicitely disable
verification. I used this option on all places where no verification was
performed previously (because alot of places actually don't pass the
MachineVerifier).
In the long term these problems should be fixed properly and verification
enabled after each pass. I'll enable some more verification in subsequent
commits.
llvm-svn: 224042
These recently all grew a unique_ptr<TargetLoweringObjectFile> member in
r221878. When anyone calls a virtual method of a class, clang-cl
requires all virtual methods to be semantically valid. This includes the
implicit virtual destructor, which triggers instantiation of the
unique_ptr destructor, which fails because the type being deleted is
incomplete.
This is just part of the ongoing saga of PR20337, which is affecting
Blink as well. Because the MSVC ABI doesn't have key functions, we end
up referencing the vtable and implicit destructor on any virtual call
through a class. We don't actually end up emitting the dtor, so it'd be
good if we could avoid this unneeded type completion work.
llvm-svn: 222480
This pass attempts to speculatively use a sqrt instruction if one exists on the target, falling back to a libcall if the target instruction returned NaN.
This was enabled for MIPS and System-Z, but is well guarded and is good for most targets - GCC does this for (that I've checked) X86, ARM and AArch64.
llvm-svn: 213752
SystemZRegisterInfo and replace it with the subtarget as that's
all they needed in the first place. Update all uses and calls
accordingly.
llvm-svn: 211877
When not optimizing, do not run the IfConverter pass, this makes
debugging more difficult (and causes a testsuite failure in
DebugInfo/unconditional-branch.ll).
llvm-svn: 210263
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
When loading immediates into a GR32, the port prefered LHI, followed by
LLILH or LLILL, followed by IILF. LHI and IILF are natural 32-bit
operations, but LLILH and LLILL also clear the upper 32 bits of the register.
This was represented as taking a 32-bit subreg of a 64-bit assignment.
Using subregs for something as simple as a move immediate was probably
a bad idea. Also, I have patches to add support for the high-word facility,
and we don't want something like LLILH and LLILL to stop the high word of
the same GPR from being used.
This patch therefore uses LHI and IILF to begin with and adds a late
machine-specific pass to use LLILH and LLILL if the other half of the
register is not live. The high-word patches extend this behavior to
IIHF, LLIHL and LLIHH.
No behavioral change intended.
llvm-svn: 191363
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097