This patch makes the following changes to the schedule of instructions in the
prologue and epilogue.
The stack pointer update is moved down in the prologue so that the callee saves
do not have to wait for the update to happen.
Saving the lr is moved down in the prologue to hide the latency of the mflr.
The stack pointer is moved up in the epilogue so that restoring of the lr can
happen sooner.
The mtlr is moved up in the epilogue so that it is away form the blr at the end
of the epilogue. The latency of the mtlr can now be hidden by the loads of the
callee saved registers.
This commit is almost identical to this one: r322036 except that two warnings
that broke build bots have been fixed.
The revision number is D41737 as before.
llvm-svn: 322124
This patch makes the following changes to the schedule of instructions in the
prologue and epilogue.
The stack pointer update is moved down in the prologue so that the callee saves
do not have to wait for the update to happen.
Saving the lr is moved down in the prologue to hide the latency of the mflr.
The stack pointer is moved up in the epilogue so that restoring of the lr can
happen sooner.
The mtlr is moved up in the epilogue so that it is away form the blr at the end
of the epilogue. The latency of the mtlr can now be hidden by the loads of the
callee saved registers.
Differential Revision: https://reviews.llvm.org/D41737
llvm-svn: 322036
The function createTailCallBranchInstr assumes that the iterator MBBI is valid.
However, only one use of MBBI is guarded in the function.
Fix this by adding an assert.
Differential Revision: https://reviews.llvm.org/D41358
llvm-svn: 321205
The liveness-tracking code assumes that the registers that were saved
in the function's prolog are live outside of the function. Specifically,
that registers that were saved are also live-on-exit from the function.
This isn't always the case as illustrated by the LR register on ARM.
Differential Revision: https://reviews.llvm.org/D36160
llvm-svn: 310619
1. The available program storage region of the red zone to compilers is 288
bytes rather than 244 bytes.
2. The formula for negative number alignment calculation should be
y = x & ~(n-1) rather than y = (x + (n-1)) & ~(n-1).
Differential Revision: https://reviews.llvm.org/D34337
llvm-svn: 307672
The variables MinGPR/MinG8R were not updated properly when resetting the
offsets, which in the included testcase lead to saving the CR register
in the same location as R30.
This fixes another issue reported in PR26519.
Differential Revision: https://reviews.llvm.org/D33017
llvm-svn: 303257
This happened on the PPC32/SVR4 path and was discovered when building
FreeBSD on PPC32. It was a typo-class error in the frame lowering code.
This fixes PR26519.
llvm-svn: 302183
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
This is per function data so it is better kept at the function instead
of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27185
llvm-svn: 288291
Unlike PPC64, PPC32/SVRV4 does not have red zone. In the absence of it
there is no guarantee that this part of the stack will not be modified
by any interrupt. To avoid this, make sure to claim the stack frame first
before storing into it.
This fixes https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24093
llvm-svn: 280705
When a function contains something, such as inline asm, which explicitly
clobbers the register used as the frame pointer, don't spill it twice. If we
need a frame pointer, it will be saved/restored in the prologue/epilogue code.
Explicitly spilling it again will reuse the same spill slot used by the
prologue/epilogue code, thus clobbering the saved value. The same applies
to the base-pointer or PIC-base register.
Partially fixes PR26856. Thanks to Ulrich for his analysis and the small
inline-asm reproducer.
llvm-svn: 280188
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr* in the PowerPC backend, mainly by preferring MachineInstr&
over MachineInstr* when a pointer isn't nullable and using range-based
for loops.
There was one piece of questionable code in PPCInstrInfo::AnalyzeBranch,
where a condition checked a pointer converted from an iterator for
nullptr. Since this case is impossible (moreover, the code above
guarantees that the iterator is valid), I removed the check when I
changed the pointer to a reference.
Despite that case, there should be no functionality change here.
llvm-svn: 276864
In the ELFv2 ABI, we are not required to save all CR fields. If only one
nonvolatile CR field is clobbered, use mfocrf instead of mfcr to
selectively save the field, because mfocrf has short latency compares to
mfcr.
Thanks Nemanja's invaluable hint!
Reviewers: nemanjai tjablin hfinkel kbarton
http://reviews.llvm.org/D17749
llvm-svn: 266038
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
This is what was meant to be in the initial commit to fix this bug. The
parens were missing. This commit also adds a test case for the bug and
has undergone full testing on PPC and X86.
llvm-svn: 261546
The patch has a necessary call to a function inside an assert. Which is fine
when you have asserts turned on. Not so much when they're off. Sorry about
the regression.
llvm-svn: 261447
This patch corresponds to review:
http://reviews.llvm.org/D17294
It ensures that whatever block we are emitting the prologue/epilogue into, we
have the necessary scratch registers. It takes away the hard-coded register
numbers for use as scratch registers as registers that are guaranteed to be
available in the function prologue/epilogue are not guaranteed to be available
within the function body. Since we shrink-wrap, the prologue/epilogue may end
up in the function body.
llvm-svn: 261441
This call should in fact be made by RegScavenger::enterBasicBlock()
called below. The first call does nothing except for triggering UB,
indicated by UBSan (passing nullptr to memset()).
llvm-svn: 254548
Re-enable shrink wrapping for PPC64 Little Endian.
One minor modification to PPCFrameLowering::findScratchRegister was necessary to handle fall-thru blocks (blocks with no terminator) correctly.
Tested with all LLVM test, clang tests, and the self-hosting build, with no problems found.
PHabricator: http://reviews.llvm.org/D14778
llvm-svn: 254314
The changes in this patch are as follows:
1. Modify the emitPrologue and emitEpilogue methods to work properly when the prologue and epilogue blocks are not the first/last blocks in the function
2. Fix a bug in PPCEarlyReturn optimization caused by an empty entry block in the function
3. Override the runShrinkWrap PredicateFtor (defined in TargetMachine) to check whether shrink wrapping should run:
Shrink wrapping will run on PPC64 (Little Endian and Big Endian) unless -enable-shrink-wrap=false is specified on command line
A new test case, ppc-shrink-wrapping.ll was created based on the existing shrink wrapping tests for x86, arm, and arm64.
Phabricator review: http://reviews.llvm.org/D11817
llvm-svn: 247237
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
llvm-svn: 242173
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
llvm-svn: 242165
This patch introduces a new pass that computes the safe point to insert the
prologue and epilogue of the function.
The interest is to find safe points that are cheaper than the entry and exits
blocks.
As an example and to avoid regressions to be introduce, this patch also
implements the required bits to enable the shrink-wrapping pass for AArch64.
** Context **
Currently we insert the prologue and epilogue of the method/function in the
entry and exits blocks. Although this is correct, we can do a better job when
those are not immediately required and insert them at less frequently executed
places.
The job of the shrink-wrapping pass is to identify such places.
** Motivating example **
Let us consider the following function that perform a call only in one branch of
a if:
define i32 @f(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
On AArch64 this code generates (removing the cfi directives to ease
readabilities):
_f: ; @f
; BB#0:
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
LBB0_2: ; %false
mov sp, x29
ldp x29, x30, [sp], #16
ret
With shrink-wrapping we could generate:
_f: ; @f
; BB#0:
cmp w0, w1
b.ge LBB0_2
; BB#1: ; %true
stp x29, x30, [sp, #-16]!
mov x29, sp
sub sp, sp, #16 ; =16
stur w0, [x29, #-4]
sub x1, x29, #4 ; =4
mov w0, wzr
bl _doSomething
add sp, x29, #16 ; =16
ldp x29, x30, [sp], #16
LBB0_2: ; %false
ret
Therefore, we would pay the overhead of setting up/destroying the frame only if
we actually do the call.
** Proposed Solution **
This patch introduces a new machine pass that perform the shrink-wrapping
analysis (See the comments at the beginning of ShrinkWrap.cpp for more details).
It then stores the safe save and restore point into the MachineFrameInfo
attached to the MachineFunction.
This information is then used by the PrologEpilogInserter (PEI) to place the
related code at the right place. This pass runs right before the PEI.
Unlike the original paper of Chow from PLDI’88, this implementation of
shrink-wrapping does not use expensive data-flow analysis and does not need hack
to properly avoid frequently executed point. Instead, it relies on dominance and
loop properties.
The pass is off by default and each target can opt-in by setting the
EnableShrinkWrap boolean to true in their derived class of TargetPassConfig.
This setting can also be overwritten on the command line by using
-enable-shrink-wrap.
Before you try out the pass for your target, make sure you properly fix your
emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not
necessarily the entry block.
** Design Decisions **
1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but
for debugging and clarity I thought it was best to have its own file.
2. Right now, we only support one save point and one restore point. At some
point we can expand this to several save point and restore point, the impacted
component would then be:
- The pass itself: New algorithm needed.
- MachineFrameInfo: Hold a list or set of Save/Restore point instead of one
pointer.
- PEI: Should loop over the save point and restore point.
Anyhow, at least for this first iteration, I do not believe this is interesting
to support the complex cases. We should revisit that when we motivating
examples.
Differential Revision: http://reviews.llvm.org/D9210
<rdar://problem/3201744>
llvm-svn: 236507
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
llvm-svn: 230413
Canonicalize access to function attributes to use the simpler API.
getAttributes().getAttribute(AttributeSet::FunctionIndex, Kind)
=> getFnAttribute(Kind)
getAttributes().hasAttribute(AttributeSet::FunctionIndex, Kind)
=> hasFnAttribute(Kind)
llvm-svn: 229224