Summary:
This lets you build with one CUDA installation but use ptxas from
another install.
This is useful e.g. if you want to avoid bugs in an old ptxas without
actually upgrading wholesale to a newer CUDA version.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27788
llvm-svn: 289847
Summary:
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
Reviewers: t.p.northover, rengolin
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27450
llvm-svn: 289786
This change allows setting the default linker used by the Clang
driver when configuring the build.
Differential Revision: https://reviews.llvm.org/D25263
llvm-svn: 289668
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
copy constructors of classes with array members, instead using
ArrayInitLoopExpr to represent the initialization loop.
This exposed a bug in the static analyzer where it was unable to differentiate
between zero-initialized and unknown array values, which has also been fixed
here.
llvm-svn: 289618
In a future change, this representation will allow us to use the new inrange
annotation on getelementptr to allow the optimizer to split vtable groups.
Differential Revision: https://reviews.llvm.org/D22296
llvm-svn: 289584
Although not specifically mentioned in the documentation, MSVC accepts
__uuidof(…) and declspec(uuid("…")) attributes on enumeration types in
addition to structs/classes. This is meaningful, as such types *do* have
associated UUIDs in ActiveX typelibs, and such attributes are included
by default in the wrappers generated by their #import construct, so they
are not particularly unusual.
clang currently rejects the declspec with a –Wignored-attributes
warning, and errors on __uuidof() with “cannot call operator __uuidof on
a type with no GUID” (because it rejected the uuid attribute, and
therefore finds no value). This is causing problems for us while trying
to use clang-tidy on a codebase that makes heavy use of ActiveX.
I believe I have found the relevant places to add this functionality,
this patch adds this case to clang’s implementation of these MS
extensions. patch is against r285994 (or actually the git mirror
80464680ce).
Both include an update to test/Parser/MicrosoftExtensions.cpp to
exercise the new functionality.
This is my first time contributing to LLVM, so if I’ve missed anything
else needed to prepare this for review just let me know!
__uuidof: https://msdn.microsoft.com/en-us/library/zaah6a61.aspx
declspec(uuid("…")): https://msdn.microsoft.com/en-us/library/3b6wkewa.aspx
#import: https://msdn.microsoft.com/en-us/library/8etzzkb6.aspx
Reviewers: aaron.ballman, majnemer, rnk
Differential Revision: https://reviews.llvm.org/D26846
llvm-svn: 289567
When an Objective-C property has a (copy) attribute, the default setter
for this property performs a -copy on the object assigned.
Calling -copy on a mutable NS object such as NSMutableString etc.
produces an immutable object, NSString in our example.
Hence the getter becomes type-incorrect.
rdar://problem/21022397
Differential Revision: https://reviews.llvm.org/D27535
llvm-svn: 289554
Summary:
Remove the CallGraph in addCallee as it is not used in addCallee.
It decouples addCallee from CallGraph, so that we can use CallGraphNode
within our customized CallGraph.
Reviewers: bkramer
Subscribers: cfe-commits, ioeric
Differential Revision: https://reviews.llvm.org/D27674
llvm-svn: 289431
While C(++) and ObjC are generally formatted the same way and can be
mixed, people might want to choose different styles based on the
language. This patch recognizes .m and .mm files as ObjC and also
implements a very crude detection of whether or not a .h file contains
ObjC code. This can be improved over time.
Also move most of the ObjC tests into their own test file to keep file
size maintainable.
llvm-svn: 289428
initialization of each array element:
* ArrayInitLoopExpr is a prvalue of array type with two subexpressions:
a common expression (an OpaqueValueExpr) that represents the up-front
computation of the source of the initialization, and a subexpression
representing a per-element initializer
* ArrayInitIndexExpr is a prvalue of type size_t representing the current
position in the loop
This will be used to replace the creation of explicit index variables in lambda
capture of arrays and copy/move construction of classes with array elements,
and also C++17 structured bindings of arrays by value (which inexplicably allow
copying an array by value, unlike all of C++'s other array declarations).
No uses of these nodes are introduced by this change, however.
llvm-svn: 289413
Include headermaps (.hmap files) in the .cache directory and
add VFS entries. All headermaps are known after HeaderSearch
setup, collect them right after.
rdar://problem/27913709
llvm-svn: 289360
This will allow the backend to constant fold these to generic shuffle vectors like 128-bit and 256-bit without having to working about handling masking.
llvm-svn: 289351
This will allow the backend to constant fold these to generic shuffle vectors like 128-bit and 256-bit without having to working about handling masking.
llvm-svn: 289345
The VirtualCallChecker is in alpha because its interprocedural diagnostics
represent the call path textually in the diagnostic message rather than with a
path sensitive diagnostic.
This patch turns off the AST-based interprocedural analysis in the checker so
that no call path is needed and improves with diagnostic text. With these
changes, the checker is ready to be moved into the optin package.
Ultimately the right fix is to rewrite this checker to be path sensitive -- but
there is still value in enabling the checker for intraprocedural analysis only
The interprocedural mode can be re-enabled with an -analyzer-config flag.
Differential Revision: https://reviews.llvm.org/D26768
llvm-svn: 289309
This allows us to negate preceding --cuda-gpu-arch=X.
This comes handy when user needs to override default
flags set for them by the build system.
Differential Revision: https://reviews.llvm.org/D27631
llvm-svn: 289287
Summary:
The Swift frontend is acquiring the ability to load non-module PCH files containing
bridging definitions from C/ObjC. As part of this work, it needs to know which submodules
were imported by a PCH in order to wrap them in local Swift modules. This information
is collected by ASTReader::ReadAST in a local vector, but is currently kept private.
The change here is just to make the type of the vector elements public, and provide
an optional out-parameter to the ReadAST method to provide the vector's contents to
a caller after a successful read.
Reviewers: manmanren, rsmith, doug.gregor
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27580
llvm-svn: 289276
The code pattern used to implement the token rewriting hack doesn't
interact well with token caching in the pre-processor. As a result,
clang would crash on 'int f(::(id));' while doing a tenative parse of
the contents of the outer parentheses. The original code from PR11852
still doesn't crash the compiler.
This error recovery also often does the wrong thing with member function
pointers. The test case from the original PR doesn't recover the right
way either:
void S::(*pf)() = S::f; // should be 'void (S::*pf)()'
Instead we were recovering as 'void S::*pf()', which is still wrong.
If we still think that users mistakenly parenthesize identifiers in
nested name specifiers, we should change clang to intentionally parse
that form with an error, rather than doing a token rewrite.
Fixes PR26623, but I think there will be many more bugs like this around
token rewriting in the parser.
Reviewers: rsmith, rtrieu
Differential Revision: https://reviews.llvm.org/D25882
llvm-svn: 289273
Other compilers accept invalid code here that we reject, and we need a
better error message to try to convince users that the code is really
incorrect. Consider:
class Foo {
typedef MyIterHelper<Foo> iterator;
friend class iterator;
};
Previously our wording was "elaborated type refers to a typedef".
"elaborated type" isn't widely known terminology, so the new diagnostic
says "typedef 'iterator' cannot be referenced with class specifier".
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D25216
llvm-svn: 289259
In amdgcn target, null pointers in global, constant, and generic address space take value 0 but null pointers in private and local address space take value -1. Currently LLVM assumes all null pointers take value 0, which results in incorrectly translated IR. To workaround this issue, instead of emit null pointers in local and private address space, a null pointer in generic address space is emitted and casted to local and private address space.
Tentative definition of global variables with non-zero initializer will have weak linkage instead of common linkage since common linkage requires zero initializer and does not have explicit section to hold the non-zero value.
Virtual member functions getNullPointer and performAddrSpaceCast are added to TargetCodeGenInfo which by default returns ConstantPointerNull and emitting addrspacecast instruction. A virtual member function getNullPointerValue is added to TargetInfo which by default returns 0. Each target can override these virtual functions to get target specific null pointer and the null pointer value for specific address space, and perform specific translations for addrspacecast.
Wrapper functions getNullPointer is added to CodegenModule and getTargetNullPointerValue is added to ASTContext to facilitate getting the target specific null pointers and their values.
This change has no effect on other targets except amdgcn target. Other targets can provide support of non-zero null pointer in a similar way.
This change only provides support for non-zero null pointer for C and OpenCL. Supporting for other languages will be added later incrementally.
Differential Revision: https://reviews.llvm.org/D26196
llvm-svn: 289252
mirror the description in the standard. Per DR1295, this means that binding a
const / rvalue reference to a bit-field no longer "binds directly", and per
P0135R1, this means that we materialize a temporary in reference binding
after adjusting cv-qualifiers and before performing a derived-to-base cast.
In C++11 onwards, this should have fixed the last case where we would
materialize a temporary of the wrong type (with a subobject adjustment inside
the MaterializeTemporaryExpr instead of outside), but we still have to deal
with that possibility in C++98, unless we want to start using xvalues to
represent materialized temporaries there too.
llvm-svn: 289250
PCH files store the macro history for a given macro, and the whole history list
for one identifier is given to the Preprocessor at once via
Preprocessor::setLoadedMacroDirective(). This contained an assert that no macro
history exists yet for that identifier. That's usually true, but it's not true
for builtin macros, which are created in Preprocessor() before flags and pchs
are processed. Luckily, ASTWriter stops writing macro history lists at builtins
(see shouldIgnoreMacro() in ASTWriter.cpp), so the head of the history list was
missing for builtin macros. So make the assert weaker, and splice the history
list to the existing single define for builtins.
https://reviews.llvm.org/D27545
llvm-svn: 289228
This saves two pointers from FunctionDecl that were being used for some
rare and questionable C-only functionality. The DeclsInPrototypeScope
ArrayRef was added in r151712 in order to parse this kind of C code:
enum e {x, y};
int f(enum {y, x} n) {
return x; // should return 1, not 0
}
The challenge is that we parse 'int f(enum {y, x} n)' it its own
function prototype scope that gets popped before we build the
FunctionDecl for 'f'. The original change was doing two questionable
things:
1. Saving all tag decls introduced in prototype scope on a TU-global
Sema variable. This is problematic when you have cases like this, where
'x' and 'y' shouldn't be visible in 'f':
void f(void (*fp)(enum { x, y } e)) { /* no x */ }
This patch fixes that, so now 'f' can't see 'x', which is consistent
with GCC.
2. Storing the decls in FunctionDecl in ActOnFunctionDeclarator so that
they could be used in ActOnStartOfFunctionDef. This is just an
inefficient way to move information around. The AST lives forever, but
the list of non-parameter decls in prototype scope is short lived.
Moving these things to the Declarator solves both of these issues.
Reviewers: rsmith
Subscribers: jmolloy, cfe-commits
Differential Revision: https://reviews.llvm.org/D27279
llvm-svn: 289225
This patch is to implement sema and parsing for 'teams distribute parallel for' pragma.
Differential Revision: https://reviews.llvm.org/D27345
llvm-svn: 289179
Some functions and templates are treated as __host__ __device__ even
when they don't have explicitly specified target attributes.
What's worse, this treatment may change depending on command line
options (-fno-cuda-host-device-constexpr) or
#pragma clang force_cuda_host_device.
Combined with strict checking for matching function target that comes
with D25809(r288962), it makes it hard to write code which would
explicitly instantiate or specialize some functions regardless of
pragmas or command line options in effect.
This patch changes the way we match target attributes of base template
vs attributes used in explicit instantiation or specialization so that
only explicitly specified attributes are considered. This makes base
template selection behave consistently regardless of pragma of command
line options that may affect CUDA target.
Differential Revision: https://reviews.llvm.org/D25845
llvm-svn: 289091
This commit provides class property code completion results. It supports
explicit and implicit class properties, but the special block completion is done
only for explicit properties right now.
rdar://25636195
Differential Revision: https://reviews.llvm.org/D27053
llvm-svn: 289058
We continue to support dynamic exception specifications in C++1z as an
extension, but produce an error-by-default warning when we encounter one. This
allows users to opt back into the feature with a warning flag, and implicitly
opts system headers back into the feature should they happen to use it.
There is one semantic change implied by P0003R5 but not implemented here:
violating a throw() exception specification should now call std::terminate
directly instead of calling std::unexpected(), but since P0003R5 also removes
std::unexpected() and std::set_unexpected, and the default unexpected handler
calls std::terminate(), a conforming C++1z program cannot tell that we are
still calling it. The upside of this strategy is perfect backwards
compatibility; the downside is that we don't get the more efficient 'noexcept'
codegen for 'throw()'.
llvm-svn: 289019
Summary:
The MSVC toolchain and Clang driver combination currently uses a fairly complex
sequence of steps to determine the MS compatibility version to pass to cc1.
There is some oddness in this sequence currently, with some code which inspects
flags in the toolchain, and some code which inspects the triple and local
environment in the driver code.
This change is an attempt to consolidate most of this logic so that
Win32-specific code lives in MSVCToolChain.cpp. I'm not 100% happy with the
split, so any suggestions are welcome.
There are a few things you might want to watch for for specifically:
- On all platforms, if MSVC compatibility flags are provided (and valid), use
those.
- The fallback sequence should be the same as before, but is now consolidated
into MSVCToolChain::getMSVCVersion:
- Otherwise, try to use the Triple.
- Otherwise, on Windows, check the executable.
- Otherwise, on Windows or with --fms-extensions, default to 18.
- Otherwise, we can't determine the version.
- MSVCToolChain::ComputeEffectiveTriple no longer calls the base
ToolChain::ComputeEffectiveClangTriple. The only thing it would change for
Windows the architecture, which we don't care about for the compatibility
version.
- I'm not sure whether this is philosophically correct (but it should
be easy to add back to MSVCToolChain::getMSVCVersionFromTriple if not).
- Previously, Tools.cpp just called getTriple() anyhow, so it doesn't look
like the effective triple was always being used previously anyhow.
Reviewers: hans, compnerd, llvm-commits, rnk
Subscribers: amccarth
Differential Revision: https://reviews.llvm.org/D27477
llvm-svn: 288998
* __host__ __device__ functions are no longer considered to be
redeclarations of __host__ or __device__ functions. This prevents
unintentional merging of target attributes across them.
* Function target attributes are not considered (and must match) during
explicit instantiation and specialization of function templates.
Differential Revision: https://reviews.llvm.org/D25809
llvm-svn: 288962
This commit fixes PR20796. It implements the C only -Wstrict-prototypes warning.
Clang now emits a warning for function declarations which have no parameters
specified and for K&R function definitions with more than 0 parameters that are
not preceded by a previous prototype declaration.
The patch was originally submitted by Paul Titei!
rdar://15060615
Differential Revision: https://reviews.llvm.org/D16533
llvm-svn: 288896
As a first step toward removing Objective-C garbage collection from
Clang, remove support from the driver. I'm hoping this will flush out
any expected bots/configurations/whatever that might rely on it.
I've left the options behind temporarily in -cc1 to keep tests passing.
I'll kill them off entirely in a follow up when I've had a chance to
update/delete the rest of Clang.
llvm-svn: 288872