- Expand tabs... (poss 80-col violations, will get them later...)
- Consolidate logic for SelectDFormAddr and SelectDForm2Addr into a single
function, simplifying maintenance. Also reduced custom instruction
generation for SPUvecinsert/INSERT_MASK.
llvm-svn: 46544
and StoreSDNode into their common base class LSBaseSDNode. Member
functions getLoadedVT and getStoredVT are replaced with the common
getMemoryVT to simplify code that will handle both loads and stores.
llvm-svn: 46538
only two addressing mode nodes, SPUaform and SPUindirect (vice the
three previous ones, SPUaform, SPUdform and SPUxform). This improves
code somewhat because we now avoid using reg+reg addressing when
it can be avoided. It also simplifies the address selection logic,
which was the main point for doing this.
Also, for various global variables that would be loaded using SPU's
A-form addressing, prefer D-form offs[reg] addressing, keeping the
base in a register if the variable is used more than once.
llvm-svn: 46483
was actually passing a completely incorrect size to sys_icache_invalidate.
Instead of having the JITEmitter do this (which doesn't have the correct
size), just make the target sync its own stubs.
llvm-svn: 46354
This case returns the value in ST(0) and then has to convert it to an SSE
register. This causes significant codegen ugliness in some cases. For
example in the trivial fp-stack-direct-ret.ll testcase we used to generate:
_bar:
subl $28, %esp
call L_foo$stub
fstpl 16(%esp)
movsd 16(%esp), %xmm0
movsd %xmm0, 8(%esp)
fldl 8(%esp)
addl $28, %esp
ret
because we move the result of foo() into an XMM register, then have to
move it back for the return of bar.
Instead of hacking ever-more special cases into the call result lowering code
we take a much simpler approach: on x86-32, fp return is modeled as always
returning into an f80 register which is then truncated to f32 or f64 as needed.
Similarly for a result, we model it as an extension to f80 + return.
This exposes the truncate and extensions to the dag combiner, allowing target
independent code to hack on them, eliminating them in this case. This gives
us this code for the example above:
_bar:
subl $12, %esp
call L_foo$stub
addl $12, %esp
ret
The nasty aspect of this is that these conversions are not legal, but we want
the second pass of dag combiner (post-legalize) to be able to hack on them.
To handle this, we lie to legalize and say they are legal, then custom expand
them on entry to the isel pass (PreprocessForFPConvert). This is gross, but
less gross than the code it is replacing :)
This also allows us to generate better code in several other cases. For
example on fp-stack-ret-conv.ll, we now generate:
_test:
subl $12, %esp
call L_foo$stub
fstps 8(%esp)
movl 16(%esp), %eax
cvtss2sd 8(%esp), %xmm0
movsd %xmm0, (%eax)
addl $12, %esp
ret
where before we produced (incidentally, the old bad code is identical to what
gcc produces):
_test:
subl $12, %esp
call L_foo$stub
fstpl (%esp)
cvtsd2ss (%esp), %xmm0
cvtss2sd %xmm0, %xmm0
movl 16(%esp), %eax
movsd %xmm0, (%eax)
addl $12, %esp
ret
Note that we generate slightly worse code on pr1505b.ll due to a scheduling
deficiency that is unrelated to this patch.
llvm-svn: 46307
precision integers. This won't actually work
(and most of the code is dead) unless the new
legalization machinery is turned on. While
there, I rationalized the handling of i1, and
removed some bogus (and unused) sextload patterns.
For i1, this could result in microscopically
better code for some architectures (not X86).
It might also result in worse code if annotating
with AssertZExt nodes turns out to be more harmful
than helpful.
llvm-svn: 46280
parameters, since otherwise it won't be passed in
the right register. With this change trampolines
work on x86-64 (thanks to Luke Guest for providing
access to an x86-64 box).
llvm-svn: 46192
as weak globals rather than commons. While not wrong,
this change tickled a latent bug in Darwin's strip,
so revert it for now as a workaround.
llvm-svn: 46147
as weak globals rather than commons. While not wrong,
this change tickled a latent bug in Darwin's strip,
so revert it for now as a workaround.
llvm-svn: 46144
Fixed CellSPU's A-form (local store) address mode, so that all globals,
externals, constant pool and jump table symbols are now wrapped within
a SPUISD::AFormAddr pseudo-instruction. This now identifies all local
store memory addresses, although it requires a bit of legerdemain during
instruction selection to properly select loads to and stores from local
store, properly generating "LQA" instructions.
Also added mul_ops.ll test harness for exercising integer multiplication.
llvm-svn: 46142
1. Legalize now always promotes truncstore of i1 to i8.
2. Remove patterns and gunk related to truncstore i1 from targets.
3. Rename the StoreXAction stuff to TruncStoreAction in TLI.
4. Make the TLI TruncStoreAction table a 2d table to handle from/to conversions.
5. Mark a wide variety of invalid truncstores as such in various targets, e.g.
X86 currently doesn't support truncstore of any of its integer types.
6. Add legalize support for truncstores with invalid value input types.
7. Add a dag combine transform to turn store(truncate) into truncstore when
safe.
The later allows us to compile CodeGen/X86/storetrunc-fp.ll to:
_foo:
fldt 20(%esp)
fldt 4(%esp)
faddp %st(1)
movl 36(%esp), %eax
fstps (%eax)
ret
instead of:
_foo:
subl $4, %esp
fldt 24(%esp)
fldt 8(%esp)
faddp %st(1)
fstps (%esp)
movl 40(%esp), %eax
movss (%esp), %xmm0
movss %xmm0, (%eax)
addl $4, %esp
ret
llvm-svn: 46140
and switch various codegen pieces and the X86 backend over
to using it.
* Add some comments to SelectionDAGNodes.h
* Introduce a second argument to FP_ROUND, which indicates
whether the FP_ROUND changes the value of its input. If
not it is safe to xform things like fp_extend(fp_round(x)) -> x.
llvm-svn: 46125
it should work, but I have no machine to test
it on. Committed because it will at least
cause no harm, and maybe someone can test it
for me!
llvm-svn: 46098
make the 'fp return in ST(0)' optimization smart enough to
look through token factor nodes. THis allows us to compile
testcases like CodeGen/X86/fp-stack-retcopy.ll into:
_carg:
subl $12, %esp
call L_foo$stub
fstpl (%esp)
fldl (%esp)
addl $12, %esp
ret
instead of:
_carg:
subl $28, %esp
call L_foo$stub
fstpl 16(%esp)
movsd 16(%esp), %xmm0
movsd %xmm0, 8(%esp)
fldl 8(%esp)
addl $28, %esp
ret
Still not optimal, but much better and this is a trivial patch. Fixing
the rest requires invasive surgery that is is not llvm 2.2 material.
llvm-svn: 46054
ShortenEHDataFor64Bits as a not-very-accurate
abstraction to cover all the changes in DwarfWriter.
Some cosmetic changes to Darwin assembly code for
gcc testsuite compatibility.
llvm-svn: 46029