Now, convert-shape-to-std doesn't internally create memrefs, which was
previously a bit of a layering violation. The conversion to memrefs
should logically happen as part of bufferization.
Differential Revision: https://reviews.llvm.org/D89669
It's unfortunate that this requires adding a dependency on scf dialect
to std bufferization (and hence all of std transforms). This is a bit
perilous. We might want a lib/Transforms/Bufferize/ with a separate
bufferization library per dialect?
Differential Revision: https://reviews.llvm.org/D89667
Measure amount of high-level or fixed-cost operations performed during
building/loading modules and during header search. High-level operations
like building a module or processing a .pcm file are motivated by
previous issues where clang was re-building modules or re-reading .pcm
files unnecessarily. Fixed-cost operations like `stat` calls are tracked
because clang cannot change how long each operation takes but it can
perform fewer of such operations to improve the compile time.
Also tracking such stats over time can help us detect compile-time
regressions. Added stats are more stable than the actual measured
compilation time, so expect the detected regressions to be less noisy.
On relanding drop stats in MemoryBuffer.cpp as their value is pretty low
but affects a lot of clients and many of those aren't interested in
modules and header search.
rdar://problem/55715134
Reviewed By: aprantl, bruno
Differential Revision: https://reviews.llvm.org/D86895
GFX10 enables third addressing mode for flat scratch instructions,
an ST mode. In that mode both register operands are omitted and
only swizzled offset is used in addition to flat_scratch base.
Differential Revision: https://reviews.llvm.org/D89501
Renamed ThreadIntelPT to TreaceThread, making it a top-level class. I noticed that this class can and shuld work for any trace plugin and there's nothing intel-pt specific in it.
With that TraceThread change, I was able to move most of the json file parsing logic to the base class TraceSessionFileParser, which makes adding new plug-ins easier.
This originally was part of https://reviews.llvm.org/D89283
Differential Revision: https://reviews.llvm.org/D89408
Before the change attempt to link libLTO.so against shared
LLVM library failed as:
```
[ 76%] Linking CXX shared library ../../lib/libLTO.so
... /usr/bin/cmake -E cmake_link_script CMakeFiles/LTO.dir/link.txt --verbose=1
c++ -o ...libLTO.so.12git ...ibLLVM-12git.so
ld: CMakeFiles/LTO.dir/lto.cpp.o: in function `llvm::InitializeAllTargetInfos()':
include/llvm/Config/Targets.def:31: undefined reference to `LLVMInitializeVETargetInfo'
```
It happens because on linux llvm build system sets default
symbol visibility to "hidden". The fix is to set visibility
back to "default" for exported APIs with LLVM_EXTERNAL_VISIBILITY.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47847
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89633
PartialDiagnostic misses some functions compared to DiagnosticBuilder.
This patch refactors DiagnosticBuilder and PartialDiagnostic, extracts
the common functionality so that the streaming << operators are
shared.
Differential Revision: https://reviews.llvm.org/D84362
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.
In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.
I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
If we switch over an enum, compiler can easily issue a diagnostic
if some case is not handled. However with an if cascade that isn't so.
Experimental evidence suggests new behavior to be superior.
D18714 introduced writeonly attribute:
"Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis."
But actually, writeonly was not attached to memmove - oversight, it seems.
So let's add it. As we can see, this helps DSE to eliminate redundant stores.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89724
Use fs::path as variable type instead of std::string, when the input
potentially is a path, as they can't be implicitly converted back to
string.
Differential Revision: https://reviews.llvm.org/D89674
Use .string() instead of .native() in places where we want to combine
paths with std::string.
Convert some methods to take a fs::path as parameter instead of
std::string, for cases where they are called with paths as
parameters (which can't be implicitly converted to std::string if
the path's string_type is wstring).
Differential Revision: https://reviews.llvm.org/D89530
Mark this as a libcpp specific test; the standard doesn't say that
this method should be noexcept.
Differential Revision: https://reviews.llvm.org/D89677
The standard doesn't declare this overload as noexcept, but doesn't
either say that it strictly cannot be noexcept either. The function
doesn't throw on errors that are signaled via error_code, but the
standard says that it may throw a bad_alloc.
This fixes an error with libstdc++ on linux.
Differential Revision: https://reviews.llvm.org/D89678
This makes them more readable in llvm-lit's output on failures.
This only applies the change on the filesystem test subdir.
Differential Revision: https://reviews.llvm.org/D89680
Update clang/lib/Format and clang/lib/Rewrite to use a `MemoryBufferRef`
from `getBufferOrFake` instead of `MemoryBuffer*` from `getBuffer`.
No functionality change here, since the call sites weren't checking if
the buffer was valid.
Differential Revision: https://reviews.llvm.org/D89406
Summary:
Initializer merging generates pretty inefficient code for large allocas
that also happens to trigger an exponential algorithm somewhere in
Machine Instruction Scheduler. See https://bugs.llvm.org/show_bug.cgi?id=47867.
This change adds an upper limit for the alloca size. The default limit
is selected such that worst case size of memtag-generated code is
similar to non-memtag (but because of the ISA quirks, this case is
realized at the different value of alloca size, ex. memset inlining
triggers at sizes below 512, but stack tagging instructions are 2x
shorter, so limit is approx. 256).
We could try harder to emit more compact code with initializer merging,
but that would only affect large, sparsely initialized allocas, and
those are doing fine already.
Reviewers: vitalybuka, pcc
Subscribers: llvm-commits
This enables these transforms for vectors:
(ctpop x) u< 2 -> (x & x-1) == 0
(ctpop x) u> 1 -> (x & x-1) != 0
(ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
(ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
All enabled if CTPOP isn't Legal. This differs from the scalar
behavior where the first two are done unconditionally and the
last two are done if CTPOP isn't Legal or Custom. The Legal
check produced better results for vectors based on X86's
custom handling. Might be worth re-visiting scalars here.
I disabled the looking through truncate for vectors. The
code that creates new setcc can use the same result VT as the
original setcc even if we truncated the input. That may work
work for most scalars, but definitely wouldn't work for vectors
unless it was a vector of i1.
Fixes or at least improves PR47825
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89346
We have pseudo instructions we use for bitcasts between these types.
We have them in the load folding table, but not the store folding
table. This adds them there so they can be used for stack spills.
I added an exact size check so that we don't fold when the stack slot
is larger than the GPR. Otherwise the upper bits in the stack slot
would be garbage. That would be fine for Eli's test case in PR47874,
but I'm not sure its safe in general.
A step towards fixing PR47874. Next steps are to change the ADDSSrr_Int
pseudo instructions to use FR32 as the second source register class
instead of VR128. That will keep the coalescer from promoting the
register class of the bitcast instruction which will make the stack
slot 4 bytes instead of 16 bytes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D89656
AA computes the correct result for phi/a1 aliasing, while BatchAA
produces an incorrect result depening on which queries have been
performed beforehand.
Use the Todo.h header file introduce in D88909 to marke part of the lowering that are
not done yet.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D88915
Also moved most of the common type definitions from libc/spec/stdc.td
to libc/spec/spec.td so that they can be used to list functions in llvm_libc_ext.td.
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D89436
These were introduced in r279902 on the grounds that using separate
MUL_U24/MUL_I24 and MULHI_U24/MULHI_I24 nodes would introduce multiple
uses of the operands, which would prevent SimplifyDemandedBits from
simplifying the operands.
This has since been fixed by D24672 "AMDGPU/SI: Use new SimplifyDemandedBits helper for multi-use operations"
No functional change intended. At least it has no effect on lit tests.
Differential Revision: https://reviews.llvm.org/D89706
The changes made in D88594 caused the test OpenMP/driver.c to fail on a 32-bit host becuase it was offloading to a 64-bit architecture by default. The offloading test was moved to a new file and a feature was added to the lit config to check for a 64-bit host.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89696
LLVM IR currently assumes some form of forward progress. This form is
not explicitly defined anywhere, and is the cause of miscompilations
in most languages that are not C++11 or later. This implicit forward progress
guarantee can not be opted out of on a function level nor on a loop
level. Languages such as C (C11 and later), C++ (pre-C++11), and Rust
have different forward progress requirements and this needs to be
evident in the IR.
Specifically, C11 and onwards (6.8.5, Paragraph 6) states that "An
iteration statement whose controlling expression is not a constant
expression, that performs no input/output operations, does not access
volatile objects, and performs no synchronization or atomic operations
in its body, controlling expression, or (in the case of for statement)
its expression-3, may be assumed by the implementation to terminate."
C++11 and onwards does not have this assumption, and instead assumes
that every thread must make progress as defined in [intro.progress] when
it comes to scheduling.
This was initially brought up in [0] as a bug, a solution was presented
in [1] which is the current workaround, and the predecessor to this
change was [2].
After defining a notion of forward progress for IR, there are two
options to address this:
1) Set the default to assuming Forward Progress and provide an opt-out for functions and an opt-in for loops.
2) Set the default to not assuming Forward Progress and provide an opt-in for functions, and an opt-in for loops.
Option 2) has been selected because only C++11 and onwards have a
forward progress requirement and it makes sense for them to opt-into it
via the defined `mustprogress` function attribute. The `mustprogress`
function attribute indicates that the function is required to make
forward progress as defined. This is sharply in contrast to the status
quo where this is implicitly assumed. In addition, `willreturn` implies `mustprogress`.
The background for why this definition was chosen is in [3] and for why
the option was chosen is in [4] and the corresponding thread(s). The implementation is in D85393, the
clang patch is in D86841, the LoopDeletion patch is in D86844, the
Inliner patches are in D87180 and D87262, and there will be more
incoming.
[0] https://bugs.llvm.org/show_bug.cgi?id=965#c25
[1] https://lists.llvm.org/pipermail/llvm-dev/2017-October/118558.html
[2] https://reviews.llvm.org/D65718
[3] https://lists.llvm.org/pipermail/llvm-dev/2020-September/144919.html
[4] https://lists.llvm.org/pipermail/llvm-dev/2020-September/145023.html
Reviewed By: jdoerfert, efriedma, nikic
Differential Revision: https://reviews.llvm.org/D86233
SourceLocation implements `operator<`, so `SourceLocation`-s can be used
as keys in `std::map` directly, there is no need to extract the internal
representation.
Since the `operator<` simply compares the internal representations of
its operands, this patch does not introduce any functional changes.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D89705
MULH is often expanded on targets.
This patch removes the isMulhCheaperThanMulShift hook and uses
isOperationLegalOrCustom instead.
Differential Revision: https://reviews.llvm.org/D80485
For testing purposes I need a way to build and install FileCheck and
yaml2obj. I had to choose between making FileCheck an LLVM tool and
making obj2yaml and yaml2obj utilities. I think the distinction is
rather arbitrary but my understanding is that tools are things meant for
the toolchain while utilities are more used for things like testing,
which is the case here.
The functional difference is that these tools now end up in the
${LLVM_UTILS_INSTALL_DIR}, which defaults to the ${LLVM_TOOLS_INSTALL_DIR}.
Unless you specified a different value or you added obj2yaml and
yaml2obj to ${LLVM_TOOLCHAIN_TOOLS}, this patch shouldn't change
anything.
Differential revision: https://reviews.llvm.org/D89357