It is valid for globals to be unnamed, but aliases must have a name. To avoid
creating invalid IR, we need to assign names to any aliases we create that
point to unnamed objects that have been moved into combined globals.
llvm-svn: 239590
Summary:
A side effect of this change is that it IRBuilder now automatically
created debug info locations for new instructions, which is the
same as debug location of insertion point. This is fine for the
functions in questions (GetStoreValueForLoad and
GetMemInstValueForLoad), as they are used in two situations:
* GVN::processLoad, which tries to eliminate a load. In this case
new instructions would have the same debug location as the load they
eventually replace;
* MaterializeAdjustedValue, which adds new instructions to the end
of the basic blocks, which could later be used to replace the load
definition. In this case we don't yet know the way the load would
be eventually replaced (either by assembling the precomputed values
via PHI, or by using them directly), so just using the basic block
strategy seems to be reasonable. There is also a special case
in the code that *would* adjust the location of the last
instruction replacing the load definition to the location of the
load.
Test Plan: regression test suite
Reviewers: echristo, dberlin, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10405
llvm-svn: 239585
This improves debug locations in passes that do a lot of basic block
transformations. Important case is LoopUnroll pass, the test for correct
debug locations accompanies this change.
Test Plan: regression test suite
Reviewers: dblaikie, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10367
llvm-svn: 239551
This only updates one of the uses. The other is used in cases
that may never touch memory, so I'm not sure why this is even
calling it. Perhaps there should be a new, similar hook for such
cases or pass -1 for unknown address space.
llvm-svn: 239540
If the first argument to a function is a 'this' argument and the second
has the sret attribute, the ArgumentPromotion pass may promote the 'this'
argument to more than one argument, violating the IR constraint that 'sret'
may only be applied to the first or second argument.
Although this IR constraint is arguably unnecessary, it highlighted the fact
that ArgPromotion does not need to preserve this attribute. Dropping the
attribute reduces register pressure in the backend by avoiding the register
copy required by sret. Because sret implies noalias, we also replace the
former with the latter.
Differential Revision: http://reviews.llvm.org/D10353
llvm-svn: 239488
Determining proper debug locations for instructions created in
PHITransAddr is tricky. We use a simple approach here and simply copy
debug locations from instructions computing load address to
"corresponding" instructions re-creating the address computation
in predecessor basic blocks.
This may not always be correct, given all the rearrangement and
simplification going on, and debug locations may jump around a lot,
as the basic blocks we copy locations between may be very far from
each other.
Still, this would work good in most simple cases (e.g. when chain
of address computing instruction is short, or our mapping turns out
to be 1-to-1), and we desire to have *some* reasonable debug locations
associated with newly inserted instructions.
See http://reviews.llvm.org/D10351 review thread for more details.
Test Plan: regression test suite
Reviewers: spatel, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10351
llvm-svn: 239479
Test Plan: regression test suite
Reviewers: eugenis, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10343
llvm-svn: 239438
We don't want to replace function A by Function B in one module and Function B
by Function A in another module.
If these functions are marked with linkonce_odr we would end up with a function
stub calling B in one module and a function stub calling A in another module. If
the linker decides to pick these two we will have two stubs calling each other.
rdar://21265586
llvm-svn: 239367
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
a = A[i]; // load of even element
b = A[i+1]; // load of odd element
... // operations on a, b, c, d
A[i] = c; // store of even element
A[i+1] = d; // store of odd element
}
The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
%wide.vec = load <8 x i32>, <8 x i32>* %ptr
%vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
%interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'.
llvm-svn: 239291
Summary:
canUnrollCompletely takes `unsigned` values for `UnrolledCost` and
`RolledDynamicCost` but is passed in `uint64_t`s that are silently
truncated. Because of this, when `UnrolledSize` is a large integer
that has a small remainder with UINT32_MAX, LLVM tries to completely
unroll loops with high trip counts.
Reviewers: mzolotukhin, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10293
llvm-svn: 239218
CVP wants to analyze the condition operand of a select along an edge.
It succeeds in getting back a Constant but not a ConstantInt. Instead,
it gets a ConstantExpr. It then assumes that the Constant must be equal
to false because it isn't equal to true.
Instead, perform an additional comparison.
This fixes PR23752.
llvm-svn: 239217
If we have (select a, b, c), it is sometimes valid to simplify this to a
single select operand. However, doing so is only valid if the
computation doesn't inject poison into the computation.
It might be helpful to consider the following example:
(select (icmp ne %i, INT_MAX), (add nsw %i, 1), INT_MIN)
The select is equivalent to (add %i, 1) but not (add nsw %i, 1).
Self hosting on x86_64 revealed that this occurs very, very rarely so
bailing out is hopefully pretty reasonable.
llvm-svn: 239215
This reverts commit r239141. This commit was an attempt to reintroduce
a previous patch that broke many self-hosting bots with clang timeouts,
but it still has slowdown issues, at least on ARM, increasing the
compilation time (stage 2, clang's) by 5x.
llvm-svn: 239175
The new naming is (to me) much easier to understand. Here is a summary
of the new state of the world:
- '*Threshold' is the threshold for full unrolling. It is measured
against the estimated unrolled cost as computed by getUserCost in TTI
(or CodeMetrics, etc). We will exceed this threshold when unrolling
loops where unrolling exposes a significant degree of simplification
of the logic within the loop.
- '*PercentDynamicCostSavedThreshold' is the percentage of the loop's
estimated dynamic execution cost which needs to be saved by unrolling
to apply a discount to the estimated unrolled cost.
- '*DynamicCostSavingsDiscount' is the discount applied to the estimated
unrolling cost when the dynamic savings are expected to be high.
When actually analyzing the loop, we now produce both an estimated
unrolled cost, and an estimated rolled cost. The rolled cost is notably
a dynamic estimate based on our analysis of the expected execution of
each iteration.
While we're still working to build up the infrastructure for making
these estimates, to me it is much more clear *how* to make them better
when they have reasonably descriptive names. For example, we may want to
apply estimated (from heuristics or profiles) dynamic execution weights
to the *dynamic* cost estimates. If we start doing that, we would also
need to track the static unrolled cost and the dynamic unrolled cost, as
only the latter could reasonably be weighted by profile information.
This patch is sadly not without functionality change for the new unroll
analysis logic. Buried in the heuristic management were several things
that surprised me. For example, we never subtracted the optimized
instruction count off when comparing against the unroll heursistics!
I don't know if this just got lost somewhere along the way or what, but
with the new accounting of things, this is much easier to keep track of
and we use the post-simplification cost estimate to compare to the
thresholds, and use the dynamic cost reduction ratio to select whether
we can exceed the baseline threshold.
The old values of these flags also don't necessarily make sense. My
impression is that none of these thresholds or discounts have been tuned
yet, and so they're just arbitrary placehold numbers. As such, I've not
bothered to adjust for the fact that this is now a discount and not
a tow-tier threshold model. We need to tune all these values once the
logic is ready to be enabled.
Differential Revision: http://reviews.llvm.org/D9966
llvm-svn: 239164
isInductionPHI wants to calculate the stride based on the pointee size.
However, this is not possible when the pointee is zero sized.
This fixes PR23763.
llvm-svn: 239143
I don't have the IR which is causing the build bot breakage but I can
postulate as to why they are timing out:
1. SimplifyWithOpReplaced was stripping flags from the simplified value.
2. visitSelectInstWithICmp was overriding SimplifyWithOpReplaced because
it's simplification wasn't correct.
3. InstCombine would revisit the add instruction and note that it can
rederive the flags.
4. By modifying the value, we chose to revisit instructions which reuse
the value. One of the instructions is the original select, causing
LLVM to never reach fixpoint.
Instead, strip the flags only when we are sure we are going to perform
the simplification.
llvm-svn: 239141
We cleverly handle cases where computation done in one argument of a select
instruction is suitable for the other operand, thus obviating the need
of the select and the comparison. However, the other operand cannot
have flags.
This fixes PR23757.
llvm-svn: 239115
We don't need to go through LSR to trigger this bug. Instead,
hand-craft a tricky GEP and get the constant folder to hack on it when
parsing the IR.
llvm-svn: 239017
Summary:
Once a gc.statepoint has been rewritten to relocate live references, the
SSA values represent physical pointers instead of logical references.
Logical dereferencability does not imply physical dereferencability and
after RewriteStatepointsForGC has run any attributes that imply
dereferencability of the logical references need to be stripped.
This current approach is conservative, and can be made more precise
later if needed. For starters, we need to strip dereferencable
attributes only from pointers that live in the GC address space.
Reviewers: reames, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10105
llvm-svn: 238883
Unreachable values may use themselves in strange ways due to their
dominance property. Attempting to translate through them can lead to
infinite recursion, crashing LLVM. Instead, claim that we weren't able
to translate the value.
This fixes PR23096.
llvm-svn: 238702
The patch evaluates the expansion cost of exitValue in indVarSimplify pass, and only does the rewriting when the expansion cost is low or loop can be deleted with the rewriting. It provides an option "-replexitval=" to control the default aggressiveness of the exitvalue rewriting. It also fixes some missing cases in SCEVExpander::isHighCostExpansionHelper to enhance the evaluation of SCEV expansion cost.
Differential Revision: http://reviews.llvm.org/D9800
llvm-svn: 238507
Currently we only fold a BitCast into a Load when the BitCast is its
only user.
Do the same for any no-op cast.
Differential Revision: http://reviews.llvm.org/D9152
llvm-svn: 238452
Canonicalizing 'x [+-] (-Constant * y)' is not a win if we don't *know*
we will open up CSE opportunities.
If the multiply was 'nsw', then negating 'y' requires us to clear the
'nsw' flag. If this is actually worth pursuing, it is probably more
appropriate to do so in GVN or EarlyCSE.
This fixes PR23675.
llvm-svn: 238397
Summary:
This patch made two improvements to NaryReassociate and the NVPTX pipeline
1. Run EarlyCSE/GVN after NaryReassociate to get rid of redundant common
expressions.
2. When adding an instruction to SeenExprs, maps both the SCEV before and after
reassociation to that instruction.
Test Plan: updated @reassociate_gep_nsw in nary-gep.ll
Reviewers: meheff, broune
Reviewed By: broune
Subscribers: dberlin, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9947
llvm-svn: 238396
model the dense vector instruction bonuses.
Previously, this code really didn't effectively compute the density of
inlined vector instructions and apply the intended inliner bonus. It
would try to compute it repeatedly while analyzing the function and
didn't handle the case where future vector instructions would tip the
scales back towards the bonus.
Instead, speculatively apply all possible bonuses to the threshold
initially. Once we *know* that a certain bonus can not be applied,
subtract it. This should delay early bailout enough to get much more
consistent results without actually causing us to analyze huge swaths of
code. I expect some (hopefully mild) compile time hit here, and some
swings in performance, but this was definitely the intended behavior of
these bonuses.
This also dramatically simplifies the computation of the bonuses to not
interact with each other in confusing ways. The previous code didn't do
a good job of this and the values for bonuses may be surprising but are
at least now clearly written in the code.
Finally, fix code to be in line with comments and use zero as the
bailout condition.
Patch by Easwaran Raman, with some comment tweaks by me to try and
further clarify what is going on with this code.
http://reviews.llvm.org/D8267
llvm-svn: 238276
Summary:
In case of functions that have a pointer argument and only pass it to
each other, the function attributes pass deduces that the pointer should
get the readnone attribute, but fails to remove a readonly attribute
that may already have been present.
Reviewers: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9995
llvm-svn: 238152
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.
The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.
In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.
Differential Revision: http://reviews.llvm.org/D9763
llvm-svn: 238071
InstCombine transforms A *nsw B +nsw A *nsw C to A *nsw (B + C).
This is incorrect -- e.g. if A = -1, B = 1, C = INT_SMAX. Then
nothing in the LHS overflows, but the multiplication in RHS overflows.
We need to first make sure that we won't multiple by INT_SMAX + 1.
Test case `add_of_mul` contributed by Sanjoy Das.
This fixes PR23635.
Differential Revision: http://reviews.llvm.org/D9629
llvm-svn: 238066
This change does a few things:
- Move some InstCombine transforms to InstSimplify
- Run SimplifyCall from within InstCombine::visitCallInst
- Teach InstSimplify to fold [us]mul_with_overflow(X, undef) to 0.
llvm-svn: 237995
PR23608 pointed out that using the preheader to gain a context instruction isn't always legal because a loop might not have a preheader. When looking into that, I realized that using the preheader to determine legality for sinking is questionable at best. Given no test covers that case and the original commit didn't seem to intend it, I restructured the code to only ask context sensative queries for hoising of loads and stores. This is effectively a partial revert of 237593.
llvm-svn: 237985
Summary:
x = &a[i];
y = &a[i + j];
=>
y = x + j;
along with some refactoring work such as extracting method
findClosestMatchingDominator.
Depends on D9786 which provides the ScalarEvolution::getGEPExpr interface.
Test Plan: nary-gep.ll
Reviewers: meheff, broune
Reviewed By: broune
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9802
llvm-svn: 237971
On X86 (and similar OOO cores) unrolling is very limited, and even if the
runtime unrolling is otherwise profitable, the expense of a division to compute
the trip count could greatly outweigh the benefits. On the A2, we unroll a lot,
and the benefits of unrolling are more significant (seeing a 5x or 6x speedup
is not uncommon), so we're more able to tolerate the expense, on average, of a
division to compute the trip count.
llvm-svn: 237947
In effect a partial revert of r237858, which was a dumb shortcut.
Looking at the dependencies of the destination should be the proper
fix: if the new memset would depend on anything other than itself,
the transformation isn't correct.
llvm-svn: 237874
Fixes PR23599, another miscompile introduced by r235232: when there is
another dependency on the destination of the created memset (i.e., the
part of the original destination that the memcpy doesn't depend on)
between the memcpy and the original memset, we would insert the created
memset after the memcpy, and thus after the other dependency.
Instead, insert the created memset right after the old one.
llvm-svn: 237858
Make sure if we're truncating a constant that would then be sign extended
that the sign extension of the truncated constant is the same as the
original constant.
> Canonicalize min/max expressions correctly.
>
> This patch introduces a canonical form for min/max idioms where one operand
> is extended or truncated. This often happens when the other operand is a
> constant. For example:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = sext i32 %a to i64
> %3 = select i1 %1, i64 %2, i64 0
>
> Would now be canonicalized into:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = select i1 %1, i32 %a, i32 0
> %3 = sext i32 %2 to i64
>
> This builds upon a patch posted by David Majenemer
> (https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
> passively stopped instcombine from ruining canonical patterns. This
> patch additionally actively makes instcombine canonicalize too.
>
> Canonicalization of expressions involving a change in type from int->fp
> or fp->int are not yet implemented.
llvm-svn: 237821
This change adds a new GC strategy for supporting the CoreCLR runtime.
This strategy is currently identical to Statepoint-example GC,
but is necessary for several upcoming changes specific to CoreCLR, such as:
1. Base-pointers not explicitly reported for interior pointers
2. Different format for stack-map encoding
3. Location of Safe-point polls: polls are only needed before loop-back edges and before tail-calls (not needed at function-entry)
4. Runtime specific handshake between calls to managed/unmanaged functions.
llvm-svn: 237753
We were special casing a handful of intrinsics as not needing a safepoint before them. After running into another valid case - memset - I took a closer look and realized that almost no intrinsics need to have a safepoint poll before them. Restructure the code to make that apparent so that we stop hitting these bugs. The only intrinsics which need a safepoint poll before them are ones which can run arbitrary code.
llvm-svn: 237744