Summary:
Before this patch call graph is like this in the LoopUnrollPass:
tryToUnrollLoop
ApproximateLoopSize
collectEphemeralValues
/* Use collected ephemeral values */
computeUnrollCount
analyzeLoopUnrollCost
/* Bail out from the analysis if loop contains CallInst */
This patch moves collection of the ephemeral values to the tryToUnrollLoop
function and passes the collected values into both ApproximateLoopsize (as
before) and additionally starts using them in analyzeLoopUnrollCost:
tryToUnrollLoop
collectEphemeralValues
ApproximateLoopSize(EphValues)
/* Use EphValues */
computeUnrollCount(EphValues)
analyzeLoopUnrollCost(EphValues)
/* Ignore ephemeral values - they don't contribute to the final cost */
/* Bail out from the analysis if loop contains CallInst */
Reviewers: mzolotukhin, evstupac, sanjoy
Reviewed By: evstupac
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43931
llvm-svn: 327617
If we have an invariant.start with no corresponding invariant.end, then the memory location becomes invariant indefinitely after the invariant.start. As a result, anything dominated by the start is guaranteed to see the value the memory location had when the invariant.start executed.
This patch adds an AvailableInvariants table which tracks the generation a particular memory location became invariant and then uses that information to allow value forwarding that would otherwise be disallowed by potentially aliasing stores. (Reminder: In EarlyCSE everything clobbers everything by default.)
This should be compatible with the MemorySSA variant, but design is generational. We can and should add first class support for invariant.start within MemorySSA at a later time. I took a quick look at doing so, but probably need some input from a MemorySSA expert.
Differential Revision: https://reviews.llvm.org/D43716
llvm-svn: 327577
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API. This allows us
to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy
calls that it creates, as well as to only change the alignment of a memcpy/memmove
argument that it replaces.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: chandlerc, bollu, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42974
llvm-svn: 327398
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.
It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.
Differential Revision: https://reviews.llvm.org/D44053
llvm-svn: 327329
getNumUses is a linear operation. It walks a linked list to get a count. So in this case its better to just ask if there are any users rather than how many.
llvm-svn: 327314
This reverts r326908, originally landed as D44102.
Reverted for causing performance regressions on x86. (These regressions
are not yet understood.)
llvm-svn: 327252
There are six separate instances of getPointerOperand() utility.
LoopVectorize.cpp has one of them,
and I don't want to create a 7th one while I'm trying to move
LoopVectorizationLegality into a separate file
(eventual objective is to move it to Analysis tree).
See http://lists.llvm.org/pipermail/llvm-dev/2018-February/120999.html
for llvm-dev discussions
Closes D43323.
Patch by Hideki Saito <hideki.saito@intel.com>.
llvm-svn: 327173
In r263618, JumpThreading learned to look trough simple cast instructions, but
only if the source of those cast instructions was a phi/cmp i1 (in an effort to
limit compile time effects). I think this condition is too restrictive. For
switches with limited value range, InstCombine will readily introduce an extra
trunc instruction to a smaller integer type (e.g. from i8 to i2), leaving us in
the somewhat perverse situation that jump-threading would work before running
instcombine, but not after. Since instcombine produces this pattern, I think we
need to consider it canonical and support it in JumpThreading. In general,
for limiting recursion, I think the existing restriction to phi and cmp nodes
should be sufficient to avoid looking through unprofitable chains of
instructions.
Patch by Keno Fischer!
Differential Revision: https://reviews.llvm.org/D42262
llvm-svn: 327150
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Backed out for failing an assert in clang bootstrap builds. Re-landing
with a fix for handling non-power-of-two inputs (e.g. udiv i24).
Original Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 326908
Breaks bootstrap builds: clang built with this patch asserts while
building MCDwarf.cpp: Assertion `castIsValid(op, S, Ty) && "Invalid
cast!"' failed.
llvm-svn: 326900
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Reviewers: spatel, sanjoy
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 326898
It's been quite some time the Dependence Analysis (DA) is broken,
as it uses the GEP representation to "identify" multi-dimensional arrays.
It even wrongly detects multi-dimensional arrays in single nested loops:
from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6
;; for (long int i = 0; i < 50; i++) {
;; A[i][3*i - 6] = i;
;; *B++ = A[i][i];
DA used to detect two subscripts, which makes no sense in the LLVM IR
or in C/C++ semantics, as there are no guarantees as in Fortran of
subscripts not overlapping into a next array dimension:
maximum nesting levels = 1
SrcPtrSCEV = %A
DstPtrSCEV = %A
using GEPs
subscript 0
src = {0,+,1}<nuw><nsw><%for.body>
dst = {0,+,1}<nuw><nsw><%for.body>
class = 1
loops = {1}
subscript 1
src = {-6,+,3}<nsw><%for.body>
dst = {0,+,1}<nuw><nsw><%for.body>
class = 1
loops = {1}
Separable = {}
Coupled = {1}
With the current patch, DA will correctly work on only one dimension:
maximum nesting levels = 1
SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body>
DstSCEV = {%A,+,404}<%for.body>
subscript 0
src = {(-2424 + %A)<nsw>,+,1212}<%for.body>
dst = {%A,+,404}<%for.body>
class = 1
loops = {1}
Separable = {0}
Coupled = {}
This change removes all uses of GEP from DA, and we now only rely
on the SCEV representation.
The patch does not turn on -da-delinearize by default, and so the DA analysis
will be more conservative in the case of multi-dimensional memory accesses in
nested loops.
I disabled some interchange tests, as the DA is not able to disambiguate
the dependence anymore. To make DA stronger, we may need to
compute a bound on the number of iterations based on the access functions
and array dimensions.
The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to
avoid checking for snippets of LLVM IR: this form of checking is very hard to
maintain. Instead, we now check for output of the pass that are more meaningful
than dozens of lines of LLVM IR. Some tests now require -debug messages and thus
only enabled with asserts.
Patch written by Sebastian Pop and Aditya Kumar.
Differential Revision: https://reviews.llvm.org/D35430
llvm-svn: 326837
Change doCallSiteSplitting to iterate until we reach the terminator instruction.
tryToSplitCallSite can replace BB's terminator in case BB is a successor of
itself. Then IE will be invalidated and we also have to check the current
terminator.
Reviewers: junbuml, davidxl, davide, fhahn
Reviewed By: fhahn, junbuml
Differential Revision: https://reviews.llvm.org/D43824
llvm-svn: 326793
Summary:
RewriteStatepointsForGC collects parse points for further processing.
During the collection if a callsite is found in an unreachable block
(DominatorTree::isReachableFromEntry()) then all unreachable blocks are
removed by removeUnreachableBlocks(). Some of the removed blocks could
have been reachable according to DominatorTree::isReachableFromEntry().
In this case the collected parse points became stale and resulted in a
crash when accessed.
The fix is to unconditionally canonicalize the IR to
removeUnreachableBlocks and then collect the parse points.
The added test crashes with the old version and passes with this patch.
Patch by Yevgeny Rouban!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D43929
llvm-svn: 326748
getCompare returns true, false or undef constants if the comparison can
be evaluated, or nullptr if it cannot. This is in line with what
ConstantExpr::getCompare returns. It also allows us to use
ConstantExpr::getCompare for comparing constants.
Reviewers: davide, mssimpso, dberlin, anna
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D43761
llvm-svn: 326720
Summary:
We can discard initial blocks that do other work
We do not need to limit ourselves to just the first block in the chain.
Reviewers: courbet, davide
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44029
llvm-svn: 326698
Iterating through predecessors of `TailBB` while removing their
terminators leads to use after-free, because the predecessor list is
changing on each removal.
llvm-svn: 326668
Summary:
`musttail` calls can't be naively splitted. The split blocks must
include not only the call instruction itself, but also (optional)
`bitcast` and `return` instructions that follow it.
Clone `bitcast` and `ret`, place them into the split blocks, and
remove the tail block when done.
Reviewers: junbuml, mcrosier, davidxl, davide, fhahn
Reviewed By: fhahn
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43729
llvm-svn: 326666
Currently when AllowRemainder is disabled, pragma unroll count is not
respected even though there is no remainder. This bug causes a loop
fully unrolled in many cases even though the user specifies a unroll
count. Especially it affects OpenCL/CUDA since in many cases a loop
contains convergent instructions and currently AllowRemainder is
disabled for such loops.
Differential Revision: https://reviews.llvm.org/D43826
llvm-svn: 326585
Do not replace results of `musttail` calls with a constant if the
call itself can't be removed.
Do not zap returns of `musttail` callees, if the call site can't be
removed and replaced with a constant.
Do not zap returns of `musttail`-calling blocks, this breaks
invariant too.
Patch by Fedor Indutny
Differential Revision: https://reviews.llvm.org/D43695
llvm-svn: 326404
Summary:
Fix a bug in MergeICmp that can lead to a BCECmp block being processed more than once and eventually lead to a broken LLVM module.
The problem is that if the non-constant value is not produced by the last block, the producer will be processed once when the its parent block
is processed and second time when the last block is processed.
We end up having 2 same BCECmpBlock in the merge queue. And eventually lead to a broken LLVM module.
Reviewers: courbet, davide
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43825
llvm-svn: 326318
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
In case we update a ValuePHI node created earlier, we could update it
based on a different OpPHI which could be in a different block.
We need to update the TempToBlock mapping reflecting the new block,
otherwise we would end up placing the new phi node in a wrong block.
This problem is exposed by the test case in
https://bugs.llvm.org/show_bug.cgi?id=36504.
This patch fixes a slightly simpler problem than in the bug report. In
the bug's re-producer, the additional problem is that we are re-using a
ValuePHI node with to few incoming values for the new OpPHI. If this
patch makes sense, I will follow it up with a patch that creates a new
PHI node if the existing PHI node has a different number of incoming
values.
Reviewers: davide, dberlin
Reviewed By: dberlin
Differential Revision: https://reviews.llvm.org/D43770
llvm-svn: 326181
The dependency matrix is only empty if no conflicting load/store
instructions have been found. In that case, it is safe to interchange.
For the LLVM test-suite, after this change around 1900 loops are
interchanged, whereas it is 15 before this change. On cortex-a57,
this gives an improvement of -0.57% on the geomean execution
time of SPEC2006, SPEC2000 and the test-suite. There are a
few small perf regressions, but I think we can improve on those
by making the cost model better.
Reviewers: karthikthecool, mcrosier
Reviewed by: karthikthecool
Differential Revision: https://reviews.llvm.org/D43236
llvm-svn: 326077
Summary:
This fixes cases like the new test @nonuniform. In that test, %cc itself
is a uniform value; however, when reading it after the end of the loop in
basic block %if, its value is effectively non-uniform.
This problem was encountered in
https://bugs.freedesktop.org/show_bug.cgi?id=103743; however, this change
in itself is not sufficient to fix that bug, as there is another issue
in the AMDGPU backend.
Change-Id: I32bbffece4a32f686fab54964dae1a5dd72949d4
Reviewers: arsenm, rampitec, jlebar
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D40546
llvm-svn: 325881
Summary:
MemDep caches results that signify that a dependence is non-local, and
there is currently no way to invalidate such cache entries.
Unfortunately, when MLSM sinks a store that can result in a non-local
dependence becoming a local one, and then MemDep gives wrong answers.
The easiest way out here is to just say that MLSM does indeed not
preserve MemDep results.
Reviewers: davide, Gerolf
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43177
llvm-svn: 325880
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AlignmentFromAssumptions pass to cease using the old getAlignment()/setAlignment API of
MemoryIntrinsic in favour of getting/setting source & dest specific alignments through
the new API. This allows us to simplify some of the code in this pass and also be more
aggressive about setting the source and destination alignments separately.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: hfinkel, bollu, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D43081
llvm-svn: 325816
This results in 15 additional unique source variables in a stage2 build
of FileCheck (at '-Os -g'), with a negligible increase in the size of
the .debug_loc section.
llvm-svn: 325660
Summary:
We used to remove the first memmove in cases like this:
memmove(p, p+2, 8);
memmove(p, p+2, 8);
which is incorrect. Fix this by changing isPossibleSelfRead to what was most
likely the intended behavior.
Historical note: the buggy code was added in https://reviews.llvm.org/rL120974
to address PR8728.
Reviewers: rsmith
Subscribers: mcrosier, llvm-commits, jlebar
Differential Revision: https://reviews.llvm.org/D43425
llvm-svn: 325641
Summary:
The LazyValueInfo pass caches a copy of the DominatorTree when available.
Whenever there are pending DominatorTree updates within JumpThreading's
DeferredDominance object we cannot use the cached DT for LVI analysis.
This commit adds the new methods enableDT() and disableDT() to LVI.
JumpThreading also sets the appropriate usage model before calling LVI
analysis methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36133
Reviewers: sebpop, dberlin, kuhar
Reviewed by: sebpop, kuhar
Subscribers: uabelho, llvm-commits, aprantl, hiraditya, a.elovikov
Differential Revision: https://reviews.llvm.org/D42717
llvm-svn: 325356
Now that we have the new TBAA metadata format that is capable of
representing accesses to aggregates, we can propagate TBAA access
tags from memory setting and transferring intrinsics to load and
store instructions and vice versa.
Since SROA produces lots of new loads and stores on optimized
builds, this change significantly decreases the share of
undecorated memory accesses on such builds.
Differential Revision: https://reviews.llvm.org/D41563
llvm-svn: 325329
In r325063, we salvaged debug values from dying instructions in
GVN::processBlock() and GVN::performScalarPRE().
The change in performScalarPRE(), while correct, is unhelpful. It
introduced a call to salvageDebugInfo() which was immediately followed
by a RAUW, meaning it prevented the RAUW from efficiently updating
dbg.value intrinsics. This commit reverts the mistake and tightens up
the affected test case.
llvm-svn: 325308
This results in small increases in the size of the .debug_loc section
and the number of unique source variables in a stage2 build of opt.
llvm-svn: 325301
Move computeLoopSafetyInfo, defined in Transforms/Utils/LoopUtils.h,
into the corresponding LoopUtils.cpp, as opposed to LICM where it resides
at the moment. This will allow other functions from Transforms/Utils
to reference it.
llvm-svn: 325151
For basic blocks with instructions between the beginning of the block
and a call we have to duplicate the instructions before the call in all
split blocks and add PHI nodes for uses of the duplicated instructions
after the call.
Currently, the threshold for the number of instructions before a call
is quite low, to keep the impact on binary size low.
Reviewers: junbuml, mcrosier, davidxl, davide
Reviewed By: junbuml
Differential Revision: https://reviews.llvm.org/D41860
llvm-svn: 325126
We can use incremental dominator tree updates to avoid re-calculating
the dominator tree after interchanging 2 loops.
Reviewers: dmgreen, kuhar
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D43176
llvm-svn: 325122
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
This preserves an additional 581 unique source variables in a stage2
build of clang (according to `llvm-dwarfdump --statistics`). It
increases the size of the .debug_loc section by 0.1% (or 87139 bytes).
Differential Revision: https://reviews.llvm.org/D43255
llvm-svn: 325063
According to `llvm-dwarfdump --statistics` this salvages 43 additional
unique source variables in a stage2 build of clang. It increases the
size of the .debug_loc section by 0.002% (or 2864 bytes).
Differential Revision: https://reviews.llvm.org/D43220
llvm-svn: 325035