The previous name was inaccurate as this token in fact appears at
the end of every preprocessing directive, not just macro definitions.
No functionality change, except for a diagnostic tweak.
llvm-svn: 126631
pointer that is passed down through the APIs, and make
FileSystemStatCache::get be the one that filters out
directory lookups that hit files. This also paves the
way to have stat queries be able to return opened files.
llvm-svn: 120060
FileSystemOpts through a ton of apis, simplifying a lot of code.
This also fixes a latent bug in ASTUnit where it would invoke
methods on FileManager without creating one in some code paths
in cindextext.
llvm-svn: 120010
When -working-directory is passed in command line, file paths are resolved relative to the specified directory.
This helps both when using libclang (where we can't require the user to actually change the working directory)
and to help reproduce test cases when the reproduction work comes along.
--FileSystemOptions is introduced which controls how file system operations are performed (currently it just contains
the working directory value if set).
--FileSystemOptions are passed around to various interfaces that perform file operations.
--Opening & reading the content of files should be done only through FileManager. This is useful in general since
file operations will be abstracted in the future for the reproduction mechanism.
FileSystemOptions is independent of FileManager so that we can have multiple translation units sharing the same
FileManager but with different FileSystemOptions.
Addresses rdar://8583824.
llvm-svn: 118203
only supporting a single stat cache. The immediate benefit of this
change is that we can now generate a PCH/AST file when including
another PCH file; in the future, the chain of stat caches will likely
be useful with multiple levels of PCH files.
llvm-svn: 84263
- Make the Diagnostic::Level for PTH errors to be specified by the caller
clang (driver):
- Set the PTHManager diagnostic level to "Diagnostic::Error" for -include-pth
(a hard error) and Diagnostic::Warning for -token-cache (we can still
proceed).
llvm-svn: 67462
to use this stat information in the PTH file using a 'StatSysCallCache' object.
Performance impact (Cocoa.h, PTH):
- number of stat calls reduces from 1230 to 425
- fsyntax-only: time improves by 4.2%
We can reduce the number of stat calls to almost zero by caching negative stat
calls and directory stat calls in the PTH file as well.
llvm-svn: 64353
actually *slightly* slower than the binary search. Since this is algorithmically
better, further performance tuning should be able to make this faster.
llvm-svn: 64326
Performance impact for -fsyntax-only on Cocoa.h (with Cocoa.h in the PTH file):
- PTH generation time improves by 5%
- PTH reading improves by 0.3%.
llvm-svn: 63072
ground work for implementing #line, and fixes the "out of macro ID's"
problem.
There is nothing particularly tricky about the code, other than the
very performance sensitive SourceManager::getFileID() method.
llvm-svn: 62978
Refactor how the preprocessor changes a token from being an tok::identifier to a
keyword (e.g. tok::kw_for). Instead of doing this in HandleIdentifier, hoist this
common case out into the caller, so that every keyword doesn't have to go through
HandleIdentifier. This drops time in HandleIdentifier from 1.25ms to .62ms, and
speeds up clang -Eonly with PTH by about 1%.
llvm-svn: 62855
tells us whether Preprocessor::HandleIdentifier needs to be called.
Because this method is only rarely needed, this saves a call and a
bunch of random checks. This drops the time in HandleIdentifier
from 3.52ms to .98ms on cocoa.h on my machine.
llvm-svn: 62675
Changes to IdentifierTable:
- High-level summary: StringMap never owns IdentifierInfos. It just
references them.
- The string map now has StringMapEntry<IdentifierInfo*> instead of
StringMapEntry<IdentifierInfo>. The IdentifierInfo object is
allocated using the same bump pointer allocator as used by the
StringMap.
Changes to IdentifierInfo:
- Added an extra pointer to point to the
StringMapEntry<IdentifierInfo*> in the string map. This pointer
will be null if the IdentifierInfo* is *only* used by the PTHLexer
(that is it isn't in the StringMap).
Algorithmic changes:
- Non-PTH case:
IdentifierInfo::get() will always consult the StringMap first to
see if we have an IdentifierInfo object. If that StringMapEntry
references a null pointer, we allocate a new one from the BumpPtrAllocator
and update the reference in the StringMapEntry.
- PTH case:
We do the same lookup as with the non-PTH case, but if we don't get
a hit in the StringMap we do a secondary lookup in the PTHManager for
the IdentifierInfo. If we don't find an IdentifierInfo we create a
new one as in the non-PTH case. If we do find and IdentifierInfo
in the PTHManager, we update the StringMapEntry to refer to it so
that the IdentifierInfo will be found on the next StringMap lookup.
This way we only do a binary search in the PTH file at most once
for a given IdentifierInfo. This greatly speeds things up for source
files containing a non-trivial amount of code.
Performance impact:
While these changes do add some extra indirection in
IdentifierTable to access an IdentifierInfo*, I saw speedups even
in the non-PTH case as well.
Non-PTH: For -fsyntax-only on Cocoa.h, we see a 6% speedup.
PTH (with Cocoa.h in token cache): 11% speedup.
I also did an experiment where we did -fsyntax-only on a source file
including a large header and Cocoa.h, but the token cache did not
contain the larger header. For this file, we were seeing a performance
*regression* when using PTH of 3% over non-PTH. Now we are seeing
a performance improvement of 9%!
Tests:
The serialization tests are now failing. I looked at this extensively,
and I my belief is that this change is unmasking a bug rather than
introducing a new one. I have disabled the serialization tests for now.
llvm-svn: 62636
"FileID" a concept that is now enforced by the compiler's type checker
instead of yet-another-random-unsigned floating around.
This is an important distinction from the "FileID" currently tracked by
SourceLocation. *That* FileID may refer to the start of a file or to a
chunk within it. The new FileID *only* refers to the file (and its
#include stack and eventually #line data), it cannot refer to a chunk.
FileID is a completely opaque datatype to all clients, only SourceManager
is allowed to poke and prod it.
llvm-svn: 62407
the "physical" location of tokens, refer to the "spelling" location.
This is more concrete and useful, tokens aren't really physical objects!
llvm-svn: 62309
- IdentifierInfo can now (optionally) have its string data not be
co-located with itself. This is for use with PTH. This aspect is a
little gross, as getName() and getLength() now make assumptions
about a possible alternate representation of IdentifierInfo.
Perhaps we should make IdentifierInfo have virtual methods?
IdentifierTable:
- Added class "IdentifierInfoLookup" that can be used by
IdentifierTable to perform "string -> IdentifierInfo" lookups using
an auxilliary data structure. This is used by PTH.
- Perform tests show that IdentifierTable::get() does not slow down
because of the extra check for the IdentiferInfoLookup object (the
regular StringMap lookup does enough work to mitigate the impact of
an extra null pointer check).
- The upshot is that now that some IdentifierInfo objects might be
owned by the IdentiferInfoLookup object. This should be reviewed.
PTH:
- Modified PTHManager::GetIdentifierInfo to *not* insert entries in
IdentifierTable's string map, and instead create IdentifierInfo
objects on the fly when mapping from persistent IDs to
IdentifierInfos. This saves a ton of work with string copies,
hashing, and StringMap lookup and resizing. This change was
motivated because when processing source files in the PTH cache we
don't need to do any string -> IdentifierInfo lookups.
- PTHManager now subclasses IdentifierInfoLookup, allowing clients of
IdentifierTable to transparently use IdentifierInfo objects managed
by the PTH file. PTHManager resolves "string -> IdentifierInfo"
queries by doing a binary search over a sorted table of identifier
strings in the PTH file (the exact algorithm we use can be changed
as needed).
These changes lead to the following performance changes when using PTH on Cocoa.h:
- fsyntax-only: 10% performance improvement
- Eonly: 30% performance improvement
llvm-svn: 62273
lexical order of the corresponding identifier strings. This will be used for a
forthcoming optimization. This slows down PTH generation time by 7%. We can
revert this change if the optimization proves to not be valuable.
llvm-svn: 62248
- Use canonical FileID when using getSpelling() caching. This
addresses some cache misses we were seeing with -fsyntax-only on
Cocoa.h
- Added Preprocessor::getPhysicalCharacterAt() utility method for
clients to grab the first character at a specified sourcelocation.
This uses the PTH spelling cache.
- Modified Sema::ActOnNumericConstant() to use
Preprocessor::getPhysicalCharacterAt() instead of
SourceManager::getCharacterData() (to get PTH hits).
These changes cause -fsyntax-only to not page in any sources from
Cocoa.h. We see a speedup of 27%.
llvm-svn: 62193
- Refactor caching logic into a helper class PTHSpellingSearch
- Allow "random accesses" in the spelling cache, thus catching the remaining
cases where 'getSpelling' wasn't hitting the PTH cache
For -Eonly, PTH, Cocoa.h:
- This reduces wall time by 3% (user time unchanged, sys time reduced)
- This reduces the amount of paged source by 1112K.
The remaining 1112K still being paged in is from somewhere else
(investigating).
llvm-svn: 62009
performance gain. Here's what we see for -Eonly on Cocoa.h (using PTH):
- wall time decreases by 21% (26% speedup overall)
- system time decreases by 35%
- user time decreases by 6%
These reductions are due to not paging source files just to get spellings for
literals. The solution in place doesn't appear to be 100% yet, as we still see
some of the pages for source files getting mapped in. Using -print-stats, we see
that SourceManager maps in 7179K less bytes of source text (reduction of 75%).
Will investigate why the remaining 25% are getting paged in.
With these changes, here's how PTH compares to non-PTH on Cocoa.h:
-Eonly: PTH takes 64% of the time as non-PTH (54% speedup)
-fsyntax-only: PTH takes 89% of the time as non-PTH (11% speedup)
llvm-svn: 61913
- Added stub PTHLexer::getSpelling() that will be used for fetching cached
spellings from the PTH file. This doesn't do anything yet.
- Added a hook in Preprocessor::getSpelling() to call PTHLexer::getSpelling()
when using a PTHLexer.
- Updated PTHLexer to read the offsets of spelling tables in the PTH file.
llvm-svn: 61911
- Encode the token length with 2 bytes instead of 4.
- This reduces the size of the .pth file for Cocoa.h by 12%.
- This speeds up PTH time (-Eonly) on Cocoa.h by 1.6%.
llvm-svn: 61364
- In PTHLexer::Lex read all of the token data from PTH file before
constructing the token. The idea is to enhance locality.
- Do not use Read8/Read32 in PTHLexer::Lex. Inline these operations manually.
- Change PTHManager::ReadIdentifierInfo() to PTHManager::GetIdentifierInfo().
They are functionally the same except that PTHLexer::Lex() reads the
persistent id.
These changes result in a 3.3% speedup for PTH on Cocoa.h (-Eonly).
llvm-svn: 61363
- Embed 'eom' tokens in PTH file.
- Use embedded 'eom' tokens to not lazily generate them in the PTHLexer.
This means that PTHLexer can always advance to the next token after
reading a token (instead of buffering tokens using a copy).
- Moved logic of 'ReadToken' into Lex. GetToken & ReadToken no longer exist.
- These changes result in a 3.3% speedup (-Eonly) on Cocoa.h.
- The code is a little gross. Many cleanups are possible and should be done.
llvm-svn: 61360
- Added a side-table per each token-cached file with the preprocessor conditional stack. This tracks what #if's are matched with what #endifs and where their respective tokens are in the PTH file. This will allow for quick skipping of excluded conditional branches in the Preprocessor.
- Performance testing shows the addition of this information (without actually utilizing it) leads to no performance regressions.
llvm-svn: 60911