This reverts commit r236422, effectively reapplying r236419. ASan
helped me diagnose the problem: the non-leaking logic would free the
ASTConsumer before freeing Sema whenever `isCurrentASTFile()`, causing a
use-after-free in `Sema::~Sema()`.
This version unconditionally frees Sema and the ASTContext before
freeing the ASTConsumer. Without the fix, these were either being freed
before the ASTConsumer was freed or leaked after, but they were always
spiritually released so this isn't really a functionality change.
I ran all of check-clang with ASan locally this time, so I'm hoping
there aren't any more problems lurking.
Original commit message:
Try again to plug a leak that's been around since at least r128011
after coming across the FIXME. Nico Weber tried something similar
in r207065 but had to revert in r207070 due to a bot failure.
The build failure isn't visible anymore so I'm not sure what went
wrong. I'm doing this slightly differently -- when not
-disable-free I'm still resetting the members (just not leaking
them) -- so maybe it will work out this time? Tests pass locally,
anyway.
llvm-svn: 236424
Try again to plug a leak that's been around since at least r128011 after
coming across the FIXME. Nico Weber tried something similar in r207065
but had to revert in r207070 due to a bot failure.
The build failure isn't visible anymore so I'm not sure what went wrong.
I'm doing this slightly differently -- when not -disable-free I'm still
resetting the members (just not leaking them) -- so maybe it will work
out this time? Tests pass locally, anyway.
llvm-svn: 236419
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
the one in the current compiler invocation. If they differ reject the PCH.
This protects against the badness occurring from getting modules loaded from different module caches (see crashes).
rdar://19889860
llvm-svn: 229909
Implicit module builds are not well-suited to a lot of build systems. In
particular, they fare badly in distributed build systems, and they lead to
build artifacts that are not tracked as part of the usual dependency management
process. This change allows explicitly-built module files (which are already
supported through the -emit-module flag) to be explicitly loaded into a build,
allowing build systems to opt to manage module builds and dependencies
themselves.
This is only the first step in supporting such configurations, and it should
be considered experimental and subject to change or removal for now.
llvm-svn: 220359
Currently the analyzer lazily models some functions using 'BodyFarm',
which constructs a fake function implementation that the analyzer
can simulate that approximates the semantics of the function when
it is called. BodyFarm does this by constructing the AST for
such definitions on-the-fly. One strength of BodyFarm
is that all symbols and types referenced by synthesized function
bodies are contextual adapted to the containing translation unit.
The downside is that these ASTs are hardcoded in Clang's own
source code.
A more scalable model is to allow these models to be defined as source
code in separate "model" files and have the analyzer use those
definitions lazily when a function body is needed. Among other things,
it will allow more customization of the analyzer for specific APIs
and platforms.
This patch provides the initial infrastructure for this feature.
It extends BodyFarm to use an abstract API 'CodeInjector' that can be
used to synthesize function bodies. That 'CodeInjector' is
implemented using a new 'ModelInjector' in libFrontend, which lazily
parses a model file and injects the ASTs into the current translation
unit.
Models are currently found by specifying a 'model-path' as an
analyzer option; if no path is specified the CodeInjector is not
used, thus defaulting to the current behavior in the analyzer.
Models currently contain a single function definition, and can
be found by finding the file <function name>.model. This is an
initial starting point for something more rich, but it bootstraps
this feature for future evolution.
This patch was contributed by Gábor Horváth as part of his
Google Summer of Code project.
Some notes:
- This introduces the notion of a "model file" into
FrontendAction and the Preprocessor. This nomenclature
is specific to the static analyzer, but possibly could be
generalized. Essentially these are sources pulled in
exogenously from the principal translation.
Preprocessor gets a 'InitializeForModelFile' and
'FinalizeForModelFile' which could possibly be hoisted out
of Preprocessor if Preprocessor exposed a new API to
change the PragmaHandlers and some other internal pieces. This
can be revisited.
FrontendAction gets a 'isModelParsingAction()' predicate function
used to allow a new FrontendAction to recycle the Preprocessor
and ASTContext. This name could probably be made something
more general (i.e., not tied to 'model files') at the expense
of losing the intent of why it exists. This can be revisited.
- This is a moderate sized patch; it has gone through some amount of
offline code review. Most of the changes to the non-analyzer
parts are fairly small, and would make little sense without
the analyzer changes.
- Most of the analyzer changes are plumbing, with the interesting
behavior being introduced by ModelInjector.cpp and
ModelConsumer.cpp.
- The new functionality introduced by this change is off-by-default.
It requires an analyzer config option to enable.
llvm-svn: 216550
After post-commit review and community discussion, this seems like a
reasonable direction to continue, making ownership semantics explicit in
the source using the type system.
llvm-svn: 215323
This allows using EndOfMainFile from a PPCallback to access data from the
action. The pattern of PPCallback referencing an action is common in clang-tidy.
Differential Revision: http://reviews.llvm.org/D4773
llvm-svn: 215145
This reverts commit r213307.
Reverting to have some on-list discussion/confirmation about the ongoing
direction of smart pointer usage in the LLVM project.
llvm-svn: 213325
(after fixing a bug in MultiplexConsumer I noticed the ownership of the
nested consumers was implemented with raw pointers - so this fixes
that... and follows the source back to its origin pushing unique_ptr
ownership up through there too)
llvm-svn: 213307
- Plugins don't need to export _ZN4llvm8Registry*.
- Win32.DLL cannot merge common symbols among DLLs. Static members in llvm::Registry should be instantiated in a parent.
llvm-svn: 212821
ensure that querying the first declaration for its most recent declaration
checks for redeclarations from the imported module.
This works as follows:
* The 'most recent' pointer on a canonical declaration grows a pointer to the
external AST source and a generation number (space- and time-optimized for
the case where there is no external source).
* Each time the 'most recent' pointer is queried, if it has an external source,
we check whether it's up to date, and update it if not.
* The ancillary data stored on the canonical declaration is allocated lazily
to avoid filling it in for declarations that end up being non-canonical.
We'll still perform a redundant (ASTContext) allocation if someone asks for
the most recent declaration from a decl before setPreviousDecl is called,
but such cases are probably all bugs, and are now easy to find.
Some finessing is still in order here -- in particular, we use a very general
mechanism for handling the DefinitionData pointer on CXXRecordData, and a more
targeted approach would be more compact.
Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was
addressing only a corner of the full problem space here. That's not covered
by this patch.
Early performance benchmarks show that this makes no measurable difference to
Clang performance without modules enabled (and fixes a major correctness issue
with modules enabled). I'll revert if a full performance comparison shows any
problems.
llvm-svn: 209046
Use this to fix the leak of DeserializedDeclsDumper and DeserializedDeclsChecker
in FrontendAction (found by LSan), PR19560.
The "delete this" bool is necessary because both PCHGenerator and ASTUnit
return the same object from both getDeserializationListener() and
getASTMutationListener(), so ASTReader can't just have a unique_ptr.
It's also not possible to just let FrontendAction (or CompilerInstance) own
these listeners due to lifetime issues (see comments on PR19560).
Finally, ASTDeserializationListener can't easily be refcounted, since several of
the current listeners are allocated on the stack.
Having this bool isn't ideal, but it's a pattern that's used in other places in
the codebase too, and it seems better than leaking.
llvm-svn: 208277
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
With r197755 we started reading the contents of buffer file entries, but the
buffers may point to ASTReader blobs that have been disposed.
Fix this by having the CompilerInstance object keep a reference to the ASTReader
as well as having the ASTContext keep reference to the ExternalASTSource.
This was very difficult to construct a test case for.
rdar://16149782
llvm-svn: 202346
Previously reverted in r201755 due to causing an assertion failure.
I've removed the offending assertion, and taught the CompilerInstance to
create a default virtual file system inside createFileManager. In the
future, we should be able to reach into the CompilerInvocation to
customize this behaviour without breaking clients that don't care.
llvm-svn: 201818
We don't stat the system headers to check for stalenes during regular
PCH loading for performance reasons. When explicitly saying
-verify-pch, we want to check all the dependencies - user or system.
llvm-svn: 200979
This option will:
- load the given pch file
- verify it is not out of date by stat'ing dependencies, and
- return 0 on success and non-zero on error
llvm-svn: 200884
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
A while ago we allowed libclang to build a PCH that had compiler errors; this was to retain the performance
afforded by a PCH even if the user's code is in an intermediate state.
Extend this for the precompiled preamble as well.
rdar://14109828
llvm-svn: 183717
since only one of them is allowed in command-line, process them separately.
Otherwise, if more than one is specified in the command-line, one is processed normally
and the others are going to be treated and included as header files.
Related to radar://13140508
llvm-svn: 174385