Instead of counting the number of read-only accesses, we now count the number of
distinct read-only array references when checking if a run-time alias check
may be too complex. The run-time alias check is quadratic in the number of
base pointers, not the number of accesses.
Before this change we accidentally skipped SPEC's lbm test case.
llvm-svn: 295567
Trying to fold such kind of dimensions will result in a division by zero,
which crashes the compiler. As such arrays are likely to invalidate the
scop anyhow (but are not illegal in LLVM-IR), there is no point in trying
to optimize the array layout. Hence, we just avoid the folding of
constant dimensions of size zero.
llvm-svn: 295415
Before this change wrapping range metadata resulted in exponential growth of
the context, which made context construction of large scops very slow. Instead,
we now just do not model the range information precisely, in case the number
of disjuncts in the context has already reached a certain limit.
llvm-svn: 295360
Commit r230230 introduced the use of range metadata to derive bounds for
parameters, instead of just looking at the type of the parameter. As part of
this commit support for wrapping ranges was added, where the lower bound of a
parameter is larger than the upper bound:
{ 255 < p || p < 0 }
However, at the same time, for wrapping ranges support for adding bounds given
by the size of the containing type has acidentally been dropped. As a result,
the range of the parameters was not guaranteed to be bounded any more. This
change makes sure we always add the bounds given by the size of the type and
then additionally add bounds based on signed wrapping, if available. For a
parameter p with a type size of 32 bit, the valid range is then:
{ -2147483648 <= p <= 2147483647 and (255 < p or p < 0) }
llvm-svn: 295349
When deriving the range of valid values of a scalar evolution expression might
be a range [12, 8), where the upper bound is smaller than the lower bound and
where the range is expected to possibly wrap around. We theoretically could
model such a range as a union of two non-wrapping ranges, but do not do this
as of yet. Instead, we just do not derive any bounds. Before this change,
we could have obtained bounds where the maximal possible value is strictly
smaller than the minimal possible value, which is incorrect and also caused
assertions during scop modeling.
llvm-svn: 294891
Before this change we created an additional reload in the copy of the incoming
block of a PHI node to reload the incoming value, even though the necessary
value has already been made available by the normally generated scalar loads.
In this change, we drop the code that generates this redundant reload and
instead just reuse the scalar value already available.
Besides making the generated code slightly cleaner, this change also makes sure
that scalar loads go through the normal logic, which means they can be remapped
(e.g. to array slots) and corresponding code is generated to load from the
remapped location. Without this change, the original scalar load at the
beginning of the non-affine region would have been remapped, but the redundant
scalar load would continue to load from the old PHI slot location.
It might be possible to further simplify the code in addOperandToPHI,
but this would not only mean to pull out getNewValue, but to also change the
insertion point update logic. As this did not work when trying it the first
time, this change is likely not trivial. To not introduce bugs last minute, we
postpone further simplications to a subsequent commit.
We also document the current behavior a little bit better.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D28892
llvm-svn: 292486
This allows us to delinearize code such as the one below, where the array
sizes are A[][2 * n] as there are n times two elements in the innermost
dimension. Alternatively, we could try to generate another dimension for the
struct in the innermost dimension, but as the struct has constant size,
recovering this dimension is easy.
struct com {
double Real;
double Img;
};
void foo(long n, struct com A[][n]) {
for (long i = 0; i < 100; i++)
for (long j = 0; j < 1000; j++)
A[i][j].Real += A[i][j].Img;
}
int main() {
struct com A[100][1000];
foo(1000, A);
llvm-svn: 288489
We now collect:
Number of total loops
Number of loops in scops
Number of scops
Number of scops with maximal loop depth 1
Number of scops with maximal loop depth 2
Number of scops with maximal loop depth 3
Number of scops with maximal loop depth 4
Number of scops with maximal loop depth 5
Number of scops with maximal loop depth 6 and larger
Number of loops in scops (profitable scops only)
Number of scops (profitable scops only)
Number of scops with maximal loop depth 1 (profitable scops only)
Number of scops with maximal loop depth 2 (profitable scops only)
Number of scops with maximal loop depth 3 (profitable scops only)
Number of scops with maximal loop depth 4 (profitable scops only)
Number of scops with maximal loop depth 5 (profitable scops only)
Number of scops with maximal loop depth 6 and larger (profitable scops only)
These statistics are certainly completely accurate as we might drop scops
when building up their polyhedral representation, but they should give a good
indication of the number of scops we detect.
llvm-svn: 287973
Our original statistics were added before we introduced a more fine-grained
diagnostic system, but the granularity of our statistics has never been
increased accordingly. This change introduces now one statistic counter per
diagnostic to enable us to collect fine-grained statistics about who certain
scops are not detected. In case coarser grained statistics are needed, the
user is expected to combine counters manually.
llvm-svn: 287968
Do not assume a load to be hoistable/invariant if the pointer is used by
another instruction in the SCoP that might write to memory and that is
always executed.
llvm-svn: 287272
The validity of a branch condition must be verified at the location of the
branch (the branch instruction), not the location of the icmp that is
used in the branch instruction. When verifying at the wrong location, we
may accept an icmp that is defined within a loop which itself dominates, but
does not contain the branch instruction. Such loops cannot be modeled as
we only introduce domain dimensions for surrounding loops. To address this
problem we change the scop detection to evaluate and verify SCEV expressions at
the right location.
This issue has been around since at least r179148 "scop detection: properly
instantiate SCEVs to the place where they are used", where we explicitly
set the scope to the wrong location. Before this commit the scope
was not explicitly set, which probably also resulted in the scope around the
ICmp to be choosen.
This resolves http://llvm.org/PR30989
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286769
Assumptions can either be added for a given basic block, in which case the set
describing the assumptions is expected to match the dimensions of its domain.
In case no basic block is provided a parameter-only set is expected to describe
the assumption.
The piecewise expressions that are generated by the SCEVAffinator sometimes
have a zero-dimensional domain (e.g., [p] -> { [] : p <= -129 or p >= 128 }),
which looks similar to a parameter-only domain, but is still a set domain.
This change adds an assert that checks that we always pass parameter domains to
addAssumptions if BB is empty to make mismatches here fail early.
We also change visitTruncExpr to always convert to parameter sets, if BB is
null. This change resolves http://llvm.org/PR30941
Another alternative to this change would have been to inspect all code to make
sure we directly generate in the SCEV affinator parameter sets in case of empty
domains. However, this would likely complicate the code which combines parameter
and non-parameter domains when constructing a statement domain. We might still
consider doing this at some point, but as this likely requires several non-local
changes this should probably be done as a separate refactoring.
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286444
When extracting constant expressions out of SCEVs, new parameters may be
introduced, which have not been registered before. This change scans
SCEV expressions after constant extraction again to make sure newly
introduced parameters are registered.
We may for example extract the constant '8' from the expression '((8 * ((%a *
%b) + %c)) + (-8 * %a))' and obtain the expression '(((-1 + %b) * %a) + %c)'.
The new expression has a new parameter '(-1 + %b) * %a)', which was not
registered before, but must be registered to not crash.
This closes http://llvm.org/PR30953
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 286430
We don't actually check whether a MemoryAccess is affine in very many
places, but one important one is in checks for aliasing.
Differential Revision: https://reviews.llvm.org/D25706
llvm-svn: 285746
When adding an llvm.memcpy instruction to AliasSetTracker, it uses the raw
source and target pointers which preserve bitcasts.
MemAccInst::getPointerOperand() also returns the raw target pointers, but
Scop::buildAliasGroups() did not for the source pointer. This lead to mismatches
between AliasSetTracker and ScopInfo on which pointer to use.
Fixed by also using raw pointers in Scop::buildAliasGroups().
llvm-svn: 285071
Integer math in LLVM IR is modular. Integer math in isl is
arbitrary-precision. Modeling LLVM IR math correctly in isl requires
either adding assumptions that math doesn't actually overflow, or
explicitly wrapping the math. However, expressions with the "nsw" flag
are special; we can pretend they're arbitrary-precision because it's
undefined behavior if the result wraps. SCEV expressions based on IR
instructions with an nsw flag also carry an nsw flag (roughly; actually,
the real rule is a bit more complicated, but the details don't matter
here).
Before this patch, SCEV flags were also overloaded with an additional
function: the ZExt code was mutating SCEV expressions as a hack to
indicate to checkForWrapping that we don't need to add assumptions to
the operand of a ZExt; it'll add explicit wrapping itself. This kind of
works... the problem is that if anything else ever touches that SCEV
expression, it'll get confused by the incorrect flags.
Instead, with this patch, we make the decision about whether to
explicitly wrap the math a bit earlier, basing the decision purely on
the SCEV expression itself, and not its users.
Differential Revision: https://reviews.llvm.org/D25287
llvm-svn: 284848
Update test after commit r284501:
[SCEV] Make CompareValueComplexity a little bit smarter
Contributed-by: Sanjoy Das <sanjoy@playingwithpointers.com>
llvm-svn: 284543
The test non_affine_loop_used_later.ll also tests the profability heuristic. Add
the option -polly-unprofitable-scalar-accs explicitely to ensure that the test
succeeds if the default value is changed.
llvm-svn: 284338
Under some conditions MK_Value read accessed where converted to MK_ExitPHI read
accessed. This is unexpected because MK_ExitPHI read accesses are implicit after
the scop execution. This behaviour was introduced in r265261, which fixed a
failed assertion/crash in CodeGen.
Instead, we fix this failure in CodeGen itself. createExitPHINodeMerges(),
despite its name, also handles accesses of kind MK_Value, only to skip them
because they access values that are usually not PHI nodes in the SCoP region's
exit block. Except in the situation observed in r265261.
Do not convert value accessed to ExitPHI accesses and do not handle
value accesses like ExitPHI accessed in CodeGen anymore.
llvm-svn: 284023
With this option one can disable the heuristic that assumes that statements with
a scalar write access cannot be profitably optimized. Such a statement instances
necessarily have WAW-dependences to itself. With DeLICM scalar accesses can be
changed to array accesses, which can avoid these WAW-dependence.
llvm-svn: 283233
ScopArrayInfo used to determine base pointer origins by looking up whether the
base pointer is a load. The "base pointer" for scalar accesses is the
llvm::Value being accessed. This is only a symbolic base pointer, it
represents the alloca variable (.s2a or .phiops) generated for it at code
generation.
This patch disables determining base pointer origin for scalars.
A test case where this caused a crash will be added in the next commit. In that
test SAI tried to get the origin base pointer that was only declared later,
therefore not existing. This is probably only possible for scalars used in
PHINode incoming blocks.
llvm-svn: 283232
The existing code would add the operands in the wrong order, and eventually
crash because the SCEV expression doesn't exactly match the parameter SCEV
expression in SCEVAffinator::visit. (SCEV doesn't sort the operands to
getMulExpr in general.)
Differential Revision: https://reviews.llvm.org/D23592
llvm-svn: 279087
Normally this is ensured when adding PHI nodes, but as PHI node dependences
do not need to be added in case all incoming blocks are within the same
non-affine region, this was missed.
This corrects an issue visible in LNT's sqlite3, in case invariant load hoisting
was disabled.
llvm-svn: 278792
This will make it easier to switch the default of Polly's invariant load
hoisting strategy and also makes it very clear that these test cases
indeed require invariant code hoisting to work.
llvm-svn: 278667
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
Check not only that the compiler is not crashing, but also whether the
probablematic part (The sequence of instructions simplified to '4') is reflected
in the output.
Thanks to Tobias for the hint.
llvm-svn: 275189
An assertion in visitSDivInstruction() checked whether the divisor is constant
by checking whether the argument is a ConstantInt. However, SCEVValidator allows
the divisor to be simplified to a constant by ScalarEvolution.
We synchronize the implementation of SCEVValidator and SCEVAffinator to both
accept simplified SCEV expressions.
llvm-svn: 275174
For llvm the memory accesses from nonaffine loops should be visible,
however for polly those nonaffine loops should be invisible/boxed.
This fixes llvm.org/PR28245
Cointributed-by: Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D21591
llvm-svn: 274842
This patch adds a new function pass ScopInfoWrapperPass so that the
polyhedral description of a region, the SCoP, can be constructed and
used in a function pass.
Patch by Utpal Bora <cs14mtech11017@iith.ac.in>
Differential Revision: http://reviews.llvm.org/D20962
llvm-svn: 273856
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
This patch was originally contributed by Johannes Doerfert in r271888, but was
in conflict with the revert in r272483. This is a recommit with some minor
adjustment to the test cases to take care of differing instruction names.
llvm-svn: 272485
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
such. In order to generate them properly as parameters we had to improve the
ScopExpander, though the change is the first in the direction of a more
aggressive scalar synthetization.
llvm-svn: 271888