Summary:
Loads/stores of some NEON vector types are promoted to other vector
types with different lane sizes but same vector size. This is not a
problem in little-endian but, when in big-endian, it requires
additional byte reversals required to preserve the lane ordering
while keeping the right endianness of the data inside each lane.
For example:
%1 = load <4 x half>, <4 x half>* %p
results in the following assembly:
ld1 { v0.2s }, [x1]
rev32 v0.4h, v0.4h
This patch changes the promotion of these loads/stores so that the
actual vector load/store (LD1/ST1) takes care of the endianness
correctly and there is no need for further byte reversals. The
previous code now results in the following assembly:
ld1 { v0.4h }, [x1]
Reviewers: olista01, SjoerdMeijer, efriedma
Reviewed By: efriedma
Subscribers: aemerson, rengolin, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D42235
llvm-svn: 323325
Summary:
Loading a vector of 4 half-precision FP sometimes results in an LD1
of 2 single-precision FP + a reversal. This results in an incorrect
byte swap due to the conversion from little endian to big endian.
In order to generate the correct byte swap, it is easier to
generate the correct LD1 of 4 half-precision FP, thus avoiding the
subsequent reversal.
Reviewers: craig.topper, jmolloy, olista01
Reviewed By: olista01
Subscribers: efriedma, samparker, SjoerdMeijer, rogfer01, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41863
llvm-svn: 322663
Initialize all AArch64-specific passes in the TargetMachine so they can be run
by llc. This can lead to conflicts in opt with some command line options that
share the same name as the pass, so I took this opportunity to do some cleanups:
* rename all relevant command line options from "aarch64-blah" to
"aarch64-enable-blah" and update the tests accordingly
* run clang-format on their declarations
* move all these declarations to a common place (the TargetMachine) as opposed
to having them scattered around (AArch64BranchRelaxation and
AArch64AddressTypePromotion were the only offenders)
llvm-svn: 277322
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
There really is no arm64_be: it was a useful fiction to test big-endian support
while both backends existed in parallel, but now the only platform that uses
the name (iOS) doesn't have a big-endian variant, let alone one called
"arm64_be".
llvm-svn: 213748
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577