This patch changes MIR stack-id from an integer to an enum,
and adds printing/parsing support for this in MIR files. The default
stack-id '0' is now renamed to 'default'.
This should make MIR tests that have stack objects with different stack-ids
more descriptive. It also clarifies code operating on StackID.
Reviewers: arsenm, thegameg, qcolombet
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60137
llvm-svn: 363533
As Roman Tereshin pointed out in https://reviews.llvm.org/D45541, the
-global-isel option is redundant when -run-pass is given. -global-isel sets up
the GlobalISel passes in the pass manager but -run-pass skips that entirely and
configures it's own pipeline.
llvm-svn: 331603
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
We used to detect loads feeding fp instructions, but we were
failing to take into account cases where this happens through copies.
For instance, loads can fed copies coming from the ABI lowering
of floating point arguments/results.
llvm-svn: 318589
We used to detect that stores were fed by fp instructions, but we were
failing to take into account cases where this happens through copies.
For instance, stores can be fed by copies coming from the ABI lowering
of floating point arguments.
llvm-svn: 318588
Instead of asserting that the type sizes are exactly equal, we check
that the new size is big enough to contain the original type.
We have to relax this constrain because, right now, we sometimes
specify that things that are smaller than a storage type are legal
instead of widening everything to the size of a storage type.
E.g., we say that G_AND s16 is legal and we map that on GPR32.
This is something we may revisit in the future (either by changing
the legalization process or keeping track separately of the storage
size and the size of the type), but let us reflect the reality of
the situation for now.
llvm-svn: 318587
This fixes http://llvm.org/PR32560. We were missing a description for
half floating point type and as a result were using the FPR 32 mapping.
Because of the size mismatch the generic code was complaining that the
default mapping is not appropriate. Fix the mapping description so that
the default mapping can be properly applied.
llvm-svn: 317287
This updates the MIRPrinter to include the regclass when printing
virtual register defs, which is already valid syntax for the
parser. That is, given 64 bit %0 and %1 in a "gpr" regbank,
%1(s64) = COPY %0(s64)
would now be written as
%1:gpr(s64) = COPY %0(s64)
While this change alone introduces a bit of redundancy with the
registers block, it allows us to update the tests to be more concise
and understandable and brings us closer to being able to remove the
registers block completely.
Note: We generally only print the class in defs, but there is one
exception. If there are uses without any defs whatsoever, we'll print
the class on all uses. I'm not completely convinced this comes up in
meaningful machine IR, but for now the MIRParser and MachineVerifier
both accept that kind of stuff, so we don't want to have a situation
where we can print something we can't parse.
llvm-svn: 316479
This reverts commit r315823, thus re-applying r315781.
Also make sure we don't use G_BITCAST mapping for non-generic registers.
Non-generic registers don't have a type but do have a reg bank.
Something the COPY mapping now how to deal with but the G_BITCAST
mapping don't.
-- Original Commit Message --
We use to resort on the generic implementation to get the mappings for
COPYs. The generic implementation resorts on table lookup and
dynamically allocated objects to get the valid mappings.
Given we already know how to map G_BITCAST and have the static mappings
for them, use that code path for COPY as well. This is much more
efficient.
Improve the compile time of RegBankSelect by up to 20%.
Note: When we eventually generate all the mappings via TableGen, we
wouldn't have to do that dance to shave compile time. The intent of this
change was to make sure that moving to static structure really pays off.
NFC.
llvm-svn: 315947
If -simplify-mir option is passed then MIRPrinter will not print such fields.
This change also required some lit test cases in CodeGen directory to be changed.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D32304
llvm-svn: 304779
For stores, check if the stored value is defined by a floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302679
This fixes PR32550, in a way that does not imply running the greedy
mode at O0.
The fix consists in checking if a load is used by any floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302453
When the OperandsMapper creates virtual registers, it used to just create
plain scalar register with the right size. This may confuse the
instruction selector because we lose the information of the instruction
using those registers what supposed to do. The MachineVerifier complains
about that already.
With this patch, the OperandsMapper still creates plain scalar register,
but the expectation is for the mapping function to remap the type
properly. The default mapping function has been updated to do that.
rdar://problem/30231850
llvm-svn: 293362
Target specific instructions have requirements that are not compatible
with what we want to test here. Namely, target specific instructions
must have their operands properly mapped on register classes.
llvm-svn: 290379
Mostly this just means changing the triple from aarch64-apple-ios to the generic
aarch64--. Only one test needs more significant changes, but GlobalISel already
does the right thing so it's ok to just change the checks.
Differential Revision: https://reviews.llvm.org/D25532
llvm-svn: 284223
This allows RegBankSelect in greedy mode to get rid some of the cross
register bank copies when loads are involved in the chain of
computation.
llvm-svn: 284097
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
More preparation for dropping source types from MachineInstrs: regsters coming
out of already-selected code (i.e. non-generic instructions) don't have a type,
but that information is needed so we must add it manually.
This is done via a new G_TYPE instruction.
llvm-svn: 280292
We're intending to move to a world where the type of a register is determined
by its (unique) def. This is incompatible with physregs, which are untyped.
It also means the other passes don't have to worry quite so much about
register-class compatibility and inserting COPYs appropriately.
llvm-svn: 280132
Specifying isSSA is an extra line at best and results in invalid MI at
worst. Compute the value instead.
Differential Revision: http://reviews.llvm.org/D22722
llvm-svn: 279600
The InstructionSelect pass assumes that RegBankSelect ran; set the
property on all tests (thereby verifying the test inputs) and require
it in the pass.
llvm-svn: 277477
RegBankSelect and InstructionSelect run after the legalizer and
require a Legalized function: check that all instructions are legal.
Note that this should be in the MachineVerifier, but it can't use the
MachineLegalizer as it's currently in the separate GlobalISel library.
Note that the RegBankSelect verifier checks have the same layering
problem, but we only use inline methods so end up not needing to link
against the GlobalISel library.
llvm-svn: 277472
This should be all the low-level instruction selection needs to determine how
to implement an operation, with the remaining context taken from the opcode
(e.g. G_ADD vs G_FADD) or other flags not based on type (e.g. fast-math).
llvm-svn: 276158
Teach AArch64RegisterBankInfo that G_OR can be mapped on either GPR or
FPR for 64-bit or 32-bit values.
Add test cases demonstrating how this information is used to coalesce a
computation on a single register bank.
llvm-svn: 272170