As noted on PR46531, we were only performing this transform on uniform vectors as we were using the m_APInt pattern matcher to extract the shift amount.
Differential Revision: https://reviews.llvm.org/D83035
If the addend of the fma is zero, common sense would suggest that we can
convert fma x, y, 0.0 to fmul x, y. This comes up with some user code
that was expecting the first fma in an unrolled loop to simplify to a
fmul.
Floating point often does not follow naive common sense though. Alive
suggests that this should be guarded by nsz (as fadd -0.0, 0.0 = 0.0).
fma x, y, -0.0 is always valid.
Differential Revision: https://reviews.llvm.org/D82778
Summary:
The advice in HowToUpdateDebugInfo.rst is to "... preserve the debug
location of an instruction if the instruction either remains in its
basic block, or if its basic block is folded into a predecessor that
branches unconditionally".
TryToSinkInstruction doesn't seem to satisfy the criteria as it's
sinking an instruction to some successor block. Preserving the debug loc
can make single-stepping appear to go backwards, or make a breakpoint
hit on that location happen "too late" (since single-stepping from that
breakpoint can cause the function to return unexpectedly).
So, drop the debug location.
This was reverted in ee3620643d because it removed source locations
from inlinable calls, breaking a verifier rule. I've added an exception
for calls because the alternative (setting a line 0 location) is not
better. I tested the updated patch by completing a stage2 RelWithDebInfo
build.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82487
Summary:
The advice in HowToUpdateDebugInfo.rst is to "... preserve the debug
location of an instruction if the instruction either remains in its
basic block, or if its basic block is folded into a predecessor that
branches unconditionally".
TryToSinkInstruction doesn't seem to satisfy the criteria as it's
sinking an instruction to some successor block. Preserving the debug loc
can make single-stepping appear to go backwards, or make a breakpoint
hit on that location happen "too late" (since single-stepping from that
breakpoint can cause the function to return unexpectedly).
So, drop the debug location.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82487
Fixed an issue in DataLayout::getIntPtrType where we were assuming
the input type was always a fixed vector type, which isn't true.
Added a test that exposed the problem to:
Transforms/InstCombine/vector_gep1.ll
Differential Revision: https://reviews.llvm.org/D82294
fabs(X) * fabs(Y) --> fabs(X * Y)
fabs(X) / fabs(Y) --> fabs(X / Y)
If both operands of fmul/fdiv are positive, then the result must be positive.
There's a NAN corner-case that prevents removing the more specific fold just
above this one:
fabs(X) * fabs(X) -> X * X
That fold works even with NAN because the sign-bit result of the multiply is
not specified if X is NAN.
We can't remove that and use the more general fold that is proposed here
because once we convert to this:
fabs (X * X)
...it is not legal to simplify the 'fabs' out of that expression when X is NAN.
That's because fabs() guarantees that the sign-bit is always cleared - even
for NAN values.
So this patch has the potential to lose information, but it seems unlikely if
we do the more specific fold ahead of this one.
Differential Revision: https://reviews.llvm.org/D82277
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
This patch transforms
```
p = phi [x, y]
s = select cond, z, p
```
with
```
s = phi[x, z]
```
if we can prove that the Phi node takes values basing on select's condition.
Differential Revision: https://reviews.llvm.org/D82072
Reviewed By: nikic
We can sometimes replace a select with a Phi node if all of its values
are available on respective incoming edges.
Differential Revision: https://reviews.llvm.org/D82005
Reviewed By: nikic
This is the integer sibling to D81491.
(a[0] + a[1] + a[2] + a[3]) - (b[0] + b[1] + b[2] +b[3]) -->
(a[0] - b[0]) + (a[1] - b[1]) + (a[2] - b[2]) + (a[3] - b[3])
Removing the "experimental" from these intrinsics is likely
not too far away.
This should probably be implied for all the speculatable ones. I think
the only ones where this plausibly doesn't apply is s_sendmsghalt and
maybe kill.
It is possible that we can try to negate the same value multiple times.
For example, PHI nodes may happen to have multiple incoming values
(all of which must be the same value) for the same incoming basic block.
It may happen that we try to negate such a PHI node, and succeed,
and that might result in having now-different incoming values..
To avoid that, and in general to reduce the amount of duplicated
work we might be doing, let's introduce a cache where
we'll track results of negating each value.
The added test was previously failing -verify after -instcombine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46362
I originally reverted the patch because it was causing performance
issues, but now I think it's just enabling simplify-cfg to do
something that I don't want instead :)
Sorry for the noise.
This reverts commit 3e39760f8e.
(a[0] + a[1] + a[2] + a[3]) - (b[0] + b[1] + b[2] +b[3]) -->
(a[0] - b[0]) + (a[1] - b[1]) + (a[2] - b[2]) + (a[3] - b[3])
This should be the last step in solving PR43953:
https://bugs.llvm.org/show_bug.cgi?id=43953
We started emitting reduction intrinsics with:
D80867/ rGe50059f6b6b3
So it's a relatively easy pattern match now to re-order those ops.
Also, I have not seen any complaints for the switch to intrinsics
yet, so I'll propose to remove the "experimental" tag from the
intrinsics soon.
Differential Revision: https://reviews.llvm.org/D81491
This is a hacky, but low-risk fix to avoid the infinite loop in PR46271:
https://bugs.llvm.org/show_bug.cgi?id=46271
As discussed there, the problem is that FoldOpIntoSelect() can get into a conflict
with a transform that wants to pull a 'not' op through min/max via
SimplifyDemandedVectorElts(). We need to relax our matching of min/max to include
undefined elements in vector constants to avoid that. Alternatively, we could
improve or cripple the demanded elements analysis, but that could create even
more problems.
The likely better, safer alternative will be to create min/max intrinsics, so
we can remove all of the hacks related to min/max matching in instcombine.
Differential Revision: https://reviews.llvm.org/D81698
Summary:
"X % C == 0" is optimized to "X & C-1 == 0" (where C is a power-of-two)
However, "X % Y" can also be represented as "X - (X / Y) * Y" so if I rewrite the initial expression:
"X - (X / C) * C == 0" it's not currently optimized to "X & C-1 == 0", see godbolt: https://godbolt.org/z/KzuXUj
This is my first contribution to LLVM so I hope I didn't mess things up
Reviewers: lebedev.ri, spatel
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79369
Having the input dumped on failure seems like a better
default: I debugged FileCheck tests for a while without knowing
about this option, which really helps to understand failures.
Remove `-dump-input-on-failure` and the environment variable
FILECHECK_DUMP_INPUT_ON_FAILURE which are now obsolete.
Differential Revision: https://reviews.llvm.org/D81422
This is intended to preserve the logic of the existing transform,
but remove unnecessary restrictions on uses and types.
https://rise4fun.com/Alive/pYfR
Pre: C1 <= width(C1) - 8
%B = sext i8 %A
%C = lshr %B, C1
%r = trunc %C to i8
=>
%r = ashr i8 %A, trunc(umin(C1, 7))
Summary:
This transformation is correct for a builtin call to 'free(p)', but not
for 'operator delete(p)'. There is no guarantee that a user replacement
'operator delete' has no effect when called on a null pointer.
However, the principle behind the transformation *is* correct, and can
be applied more broadly: a 'delete p' expression is permitted to
unconditionally call 'operator delete(p)'. So do that in Clang under
-Oz where possible. We do this whether or not 'p' has trivial
destruction, since the destruction might turn out to be trivial after
inlining, and even for a class-specific (but non-virtual,
non-destroying, non-array) 'operator delete'.
Reviewers: davide, dnsampaio, rjmccall
Reviewed By: dnsampaio
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D79378
We can simplify
```
icmp <pred> phi(C1, C2, ...), C
```
with
```
phi(icmp(C1, C), icmp(C2, C), ...)
```
provided that all comparison of constants are constants themselves.
Differential Revision: https://reviews.llvm.org/D81151
Reviewed By: lebedev.ri
As mentioned in the post-commit comments of D81013 -
the mask check API has to assume the shuffle is
not length-changing, but we have not ruled that out
in this code. Use the ShuffleVectorInst call instead.
Remove the function Instruction::setProfWeight() and make
use of Instruction::copyMetadata(.., {LLVMContext::MD_prof}).
This is correct for all use cases of setProfWeight() as it
is applied to CallBase instructions only.
This change results in prof metadata copied intact even if
the source has "VP". The old pair of calls
extractProfTotalWeight() + setProfWeight() resulted in
setting branch_weights if the source had "VP" data.
Reviewers: yamauchi, davidxl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80987
Whilst trying to compile this test to assembly:
CodeGen/aarch64-sve-intrinsics/acle_sve_reinterpret.c
I discovered some warnings were firing in InstCombiner::visitBitCast
due to calls to getNumElements() for scalable vector types. These
calls only really made sense for fixed width vectors so I have fixed
up the code appropriately.
Differential Revision: https://reviews.llvm.org/D80559
We've started (D80598) the process of migrating away from the inline operand lists in statepoints to using explicit operand bundles. Update a few tests to reflect the new preference. More to come, these were simply the ones outside any obvious grouping.
The -reassociate pass tends to transform this kind of pattern into
something that is worse for vectorization and codegen. See PR43953:
https://bugs.llvm.org/show_bug.cgi?id=43953
Follows-up the FP version of the same transform:
rGa0ce2338a083
The -reassociate pass tends to transform this kind of pattern into
something that is worse for vectorization and codegen. See PR43953:
https://bugs.llvm.org/show_bug.cgi?id=43953
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
We have to assume undef could be an snan, which would need quieting so
returning qnan is safer than undef. Also consider strictfp, and don't
care if the result rounded.
This eliminates a use of 'B', so it can enable follow-on transforms
as well as improve analysis/codegen.
The PhaseOrdering test was added for D61726, and that shows
the limits of instcombine vs. real reassociation. We would
need to run some form of CSE to collapse that further.
The intermediate variable naming here is intentional because
there's a test at llvm/test/Bitcode/value-with-long-name.ll
that would break with the usual nameless value. I'm not sure
how to improve that test to be more robust.
The naming may also be helpful to debug regressions if this
change exposes weaknesses in the reassociation pass for example.
This really belongs in InstructionSimplify since it doesn't introduce
new instructions. Put it in instcombine to avoid increasing the number
of passes considering target intrinsics.
I also noticed that we seem to now be interpreting strictfp attributes
on call sites, so try to handle that.
If the only user of `Instr` is in a return or unreachable block, we can
sink `Instr` to the`User` safely (unless it reads/writes memory).
Return or unreachable blocks are guaranteed to execute zero
or one time, and `Instr` always dominates `User`, so they either will
be executed together (execution of `User` always implies execution
of `Instr`) or not executed at all.
Differential Revision: https://reviews.llvm.org/D80120
Reviewed By: asbirlea, jdoerfert
If we don't know anything about the alignment of a pointer, Align(1) is
still correct: all pointers are at least 1-byte aligned.
Included in this patch is a bugfix for an issue discovered during this
cleanup: pointers with "dereferenceable" attributes/metadata were
assumed to be aligned according to the type of the pointer. This
wasn't intentional, as far as I can tell, so Loads.cpp was fixed to
stop making this assumption. Frontends may need to be updated. I
updated clang's handling of C++ references, and added a release note for
this.
Differential Revision: https://reviews.llvm.org/D80072
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
We already check hasNoNaNs and that x is finite and strictly positive.
That only leaves the following special cases (taken from the Linux man
page for pow):
If x is +1, the result is 1.0 (even if y is a NaN).
If the absolute value of x is less than 1, and y is negative infinity, the result is positive infinity.
If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.
If the absolute value of x is less than 1, and y is positive infinity, the result is +0.
If the absolute value of x is greater than 1, and y is positive infinity, the result is positive infinity.
The first case is handled elsewhere, and this transformation preserves
all the others, so there is no need to limit it to hasNoInfs.
Differential Revision: https://reviews.llvm.org/D79409
Summary:
When salvaging a dead zext instruction, append a convert operation to
the DIExpressions of the debug uses of the instruction, to prevent the
salvaged value from being sign-extended.
I confirmed that lldb prints out the correct unsigned result for "f" in
the example from PR45923 with this changed applied.
rdar://63246143
Reviewers: aprantl, jmorse, chrisjackson, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80034
We can't leave undef vector element constants as-is,
it is a miscompile, so we need to sanitize them.
We have two vectors (C and ~C):
* We can't replace undef with 0 in both of them
* We can't replace undef with 0 in only one of them
* We could replace undef with -1 in both of them
* We could replace undef with -1 in only one(!) of them
* We could replace undef with -1 in one and 0 in another one of them.
Therefore, it seems best to go with the last option, since otherwise
we'd loose knowledge that C and ~C have no common bits set,
which seems more important than preserving partial undef knowledge.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45955
This was originally in D79116.
Converting from a narrow-enough FP source value to integer and
back to FP guarantees that the conversion to FP is exact because
of UB/poison-on-overflow.
This was suggested in PR36617:
https://bugs.llvm.org/show_bug.cgi?id=36617#c19
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
We have a transform in the opposite direction only for the x86 MMX type,
Other types are not handled either way before this patch.
The motivating case from PR45748:
https://bugs.llvm.org/show_bug.cgi?id=45748
...is the last test diff. In that example, we are triggering an existing
bitcast transform, so we reduce the number of casts, and that should give
us the ideal x86 codegen.
Differential Revision: https://reviews.llvm.org/D79171
Fold or(zext(bitreverse(x)),shl(zext(bitreverse(y)),bw/2) -> bitreverse(or(zext(x),shl(zext(y),bw/2))
Practically this is the same as the BSWAP pattern so we might as well handle it.