We use the branch instruction as the location at which a PHI-node write takes
place, instead of the PHI-node itself. This allows us to identify the
basic-block in a region statement which is on the incoming edge of the PHI-node
and for which the write access was originally introduced. As a result we can,
during code generation, avoid generating PHI-node write accesses for basic
blocks that do not preceed the PHI node without having to look at the IR
again.
This change fixes a bug which was introduced in r243420, when we started to
explicitly model PHI-node reads and writes, but dropped some additional checks
that where still necessary during code generation to not emit PHI-node writes
for basic-blocks that are not on incoming edges of the original PHI node.
Compared to the code before r243420 the new code does not need to inspect the IR
any more and we also do not generate multiple redundant writes.
llvm-svn: 243852
The schedule map we derive from a schedule tree map may map statements into
schedule spaces of different dimensionality. This change adds zero padding
to ensure just a single schedule space is used and the translation from
a union_map to an isl_multi_union_pw_aff does not fail.
llvm-svn: 243849
SCEVExpander, which we are using during code generation, only allows
instructions as insert locations, but breaks in case BasicBlock->end() iterators
are passed to it due to it trying to obtain the basic block in which code should
be generated by calling Instruction->getParent(), which is not defined for
->end() iterators.
This change adds an assert to Polly that ensures we only pass valid instructions
to SCEVExpander and it fixes one case, where we used IRBuilder->SetInsertBlock()
to set an ->end() insert location which was later passed to SCEVExpander.
In general, Polly is always trying to build up the CFG first, before we actually
insert instructions into the CFG sceleton. As a result, each basic block should
already have at least one branch instruction before we start adding code. Hence,
always requiring the IRBuilder insert location to be set to a real instruction
should always be possible.
Thanks Utpal Bora <cs14mtech11017@iith.ac.in> for his help with test case
reduction.
llvm-svn: 243830
Such codes are not interesting to optimize and most likely never appear in the
normal compilation flow. However, they show up during test case reduction with
bugpoint and trigger -- without this change -- an assert in
polly::MemoryAccess::foldAccess(). It is better to detect them in
ScopDetection itself and just bail out.
Contributed-by: Utpal Bora <cs14mtech11017@iith.ac.in>
Reviewers: grosser
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D11425
llvm-svn: 243515
Schedule trees are a lot easier to work with, for both humans and machines. For
humans the more structured schedule representation is easier to reason about.
Together with the more abstract isl programming interface this can result in a
lot cleaner code (see this changeset). For machines, the structured schedule and
the fact that we now use explicit piecewise affine expressions instead of
integer maps makes it easier to generate code from this schedule tree. As a
result, we can already see a slight compile-time improvement -- for 3mm from
0m0.593s to 0m0.551s seconds (-7 %). More importantly, future optimizations such
as full-partial tile separation will most likely result in more streamlined code
to be generated.
Contributed-by: Roman Gareev <gareevroman@gmail.com>
llvm-svn: 243458
Summary:
When translating PHI nodes into memory dependences during code generation we
require two kinds of memory. 'Normal memory' as for all scalar dependences and
'PHI node memory' to store the incoming values of the PHI node. With this
patch we now mark and track these two kinds of memories, which we previously
incorrectly marked as a single memory object.
Being aware of PHI node storage makes code generation easier, as we do not need
to guess what kind of storage a scalar reference requires. This simplifies the
code nicely.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D11554
llvm-svn: 243420
These test cases check whether Polly still gives the same results if
LICM runs before. Currently, it does not and therefore these cases are
expected fails.
llvm-svn: 243037
As specified in PR23888, run-time alias check generation is expensive
in terms of compile-time. This reduces the compile time by computing
minimal/maximal access only once for each base pointer
Contributed-by: Pratik Bhatu <cs12b1010@iith.ac.in>
llvm-svn: 243024
Put all Polly targets into a single "Polly" category (i.e.
solution folder). Previously there was no recognizable scheme and most
categories contained just one or two targets or targets didn't belong
to any category.
Reviewers: grosser
llvm-svn: 242779
Instead of flat schedules, we now use so-called schedule trees to represent the
execution order of the statements in a SCoP. Schedule trees make it a lot easier
to analyze, understand and modify properties of a schedule, as specific nodes
in the tree can be choosen and possibly replaced.
This patch does not yet fully move our DependenceInfo pass to schedule trees,
as some additional performance analysis is needed here. (In general schedule
trees should be faster in compile-time, as the more structured representation
is generally easier to analyze and work with). We also can not yet perform the
reduction analysis on schedule trees.
For more information regarding schedule trees, please see Section 6 of
https://lirias.kuleuven.be/handle/123456789/497238
llvm-svn: 242130
Named isl sets can generally have any name if they remain within Polly, but only
certain strings can be parsed by isl. The new names we create ensure that we
can always copy-past isl strings from Polly to other isl tools, e.g. for
debugging.
llvm-svn: 241787
This is very preliminary support, but it seems to work for the most common case.
When observing more/different test cases, we can work on generalizing this.
llvm-svn: 240955
This removes old code that has been disabled since several weeks and was hidden
behind the flags -disable-polly-intra-scop-scalar-to-array=false and
-polly-model-phi-nodes=false. Earlier, Polly used to translate scalars and
PHI nodes to single element arrays, as this avoided the need for their special
handling in Polly. With Johannes' patches adding native support for such scalar
references to Polly, this code is not needed any more. After this commit both
-polly-prepare and -polly-independent are now mostly no-ops. Only a couple of
simple transformations still remain, but they are scheduled for removal too.
Thanks again to Johannes Doerfert for his nice work in making all this code
obsolete.
llvm-svn: 240766
Remainder operations with constant divisor can be modeled as quasi-affine
expression. This patch adds support for detecting and modeling them. We also
add a test that ensures they are correctly code generated.
This patch was extracted from a larger patch contributed by Johannes Doerfert
in http://reviews.llvm.org/D5293
llvm-svn: 240518
This makes the test cases nonaffine even if Polly some days gains support for
the srem instruction, an instruction which is currently not modeled but which
can clearly be modeled statically. A call to a function without definition
will always remain non-affine, as there is just insufficient static information
for it to be modeled more precisely.
llvm-svn: 240458
LLVM's instcombine already translates power-of-two sdivs that are known to be
exact to fast ashr instructions. Hence, there is no need to add this logic
ourselves.
Pointed-out-by: Johannes Doerfert
llvm-svn: 239025
We now verify that memory access functions imported via JSON are indeed defined
for the full iteration domain. Before this change we accidentally imported
memory mappings such as i -> i / 127, which only defined a mapped for values of
i that are evenly divisible by 127, but which did not define any mapping for the
remaining values, with the result that isl just generated an access expression
that had undefined behavior for all the unmapped values.
In the incorrect test cases, we now either use floor(i/127) or we use p/127 and
provide the information that p is indeed a multiple of 127.
llvm-svn: 239024
isl marks known non-negative numerators in modulo (and soon also division)
operations. We now exploit this by generating unsigned operations. This is
beneficial as unsigned operations with power-of-two denominators will be
translated by isl to fast bitshift or bitwise and operations.
llvm-svn: 238577
While looking through the test cases I realized we did not have a CHECK line
for a duplicate memory access which we may want to eliminate later. To ensure
we do not have (or later introduce) unnecessary memory accesses, we now tighten
the test cases to look for such a pattern (and add the CHECK: line that shows
the redundant memory access).
llvm-svn: 238227
This ensures we pass all tests independently of how we set the options
-disable-polly-intra-scop-scalar-to-array and -polly-model-phi-nodes.
(At least if we enable both or disable both. Enabling them individually makes
little sense, as they will hopefully disappear soon anyhow).
llvm-svn: 238087
To reduce compile time and to allow more and better quality SCoPs in
the long run we introduced scalar dependences and PHI-modeling. This
patch will now allow us to generate code if one or both of those
options are set. While the principle of demoting scalars as well as
PHIs to memory in order to communicate their value stays the same,
this allows to delay the demotion till the very end (the actual code
generation). Consequently:
- We __almost__ do not modify the code if we do not generate code
for an optimized SCoP in the end. Thus, the early exit as well as
the unprofitable option will now actually preven us from
introducing regressions in case we will probably not get better
code.
- Polly can be used as a "pure" analyzer tool as long as the code
generator is set to none.
- The original SCoP is almost not touched when the optimized version
is placed next to it. Runtime regressions if the runtime checks
chooses the original are not to be expected and later
optimizations do not need to revert the demotion for that part.
- We will generate direct accesses to the demoted values, thus there
are no "trivial GEPs" that select the first element of a scalar we
demoted and treated as an array.
Differential Revision: http://reviews.llvm.org/D7513
llvm-svn: 238070
Being here, we extend the interface to return the element type and not a pointer
to the element type. We also provide a function to get the size (in bytes) of
the elements stored in this array.
We currently still store the element size as an innermost dimension in
ScopArrayInfo, which is somehow inconsistent and should be addressed in future
patches.
llvm-svn: 237779
Modified two test cases to adjust to the above change in renaming.
These two files were causing the buildbot failure in Polly, #30204 for example.
Details in http://reviews.llvm.org/D9483
This checkin goes with r237150 and r237151
llvm-svn: 237203
Besides class, function and file names, we also change the command line option
from -polly-codegen-isl to just -polly-codegen. The isl postfix is a leftover
from the times when we still had the CLooG based -polly-codegen. Today it is
just redundant and we drop it.
llvm-svn: 237099
In the lnt benchmark MultiSource/Benchmarks/MallocBench/gs/gs with
scalar and PHI modeling we detected the multidimensional accesses
with sizes variant in the SCoP. This will check the sizes for validity.
llvm-svn: 236395
This option is enabled since a long time and there does not seem to be a
situation in which we would not want to print alias scopes. Remove this option
to reduce the set of command-line option combinations that may expose bugs.
llvm-svn: 235861
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.
llvm-svn: 235384
In Polly we used both the term 'scattering' and the term 'schedule' to describe
the execution order of a statement without actually distinguishing between them.
We now uniformly use the term 'schedule' for the execution order. This
corresponds to the terminology of isl.
History: CLooG introduced the term scattering as the generated code can be used
as a sequential execution order (schedule) or as a parallel dimension
enumerating different threads of execution (placement). In Polly and/or isl the
term placement was never used, but we uniformly refer to an execution order as a
schedule and only later introduce parallelism. When doing so we do not talk
about about specific placement dimensions.
llvm-svn: 235380
This will allow the ScopInfo to build the polyhedral representation for
non-affine regions that contain loops. Such loops are basically not visible
in the SCoP representation. Accesses that are variant in such loops are
therefor represented as non-affine accesses.
Differential Revision: http://reviews.llvm.org/D8153
llvm-svn: 234713
This will allow the ScopDetection to detect non-affine regions that
contain loops. All loops contained will be collected and are
accessible to later passes in order to adjust the access functions.
As the loops are non-affine and will not be part of the polyhedral
representation later, all accesses that are variant in these loops
have to be over approximated as non-affine accesses. They are
therefore handled the same way as other non-affine accesses.
Additionally, we do not count non-affine loops for the profitability
heuristic, thus a region with only a non-affine loop will only be
detected if the general detection of loop free regions is enabled.
Differential Revision: http://reviews.llvm.org/D8152
llvm-svn: 234711
This change ensures that we sign-extend integer types in case non-matching
operands are encountered when generating a multi-dimensional access offset.
This fixes http://llvm.org/PR23124
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 234122
As soon as one operand of the product is invalid, the entire product is invalid.
This happens for example if one of the operands is not loop-invariant.
This fixes http://llvm.org/PR23125
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com
llvm-svn: 234119