Originally I thought that I needed to do a #include to trick the
compiler into letting me use typeid I believe, but Aaron explained that
it was just looking for the type_info type. I had to give it some
public/private members to make it emit the same as before, but this
ought to be a 'perfect' replacement.
My downstream noticed that the test failed on windows-32 bit machines
since the types have __attribute__((thiscall)) on them in a few places.
This patch just adds a wildcard to handle that, since it isn't
particularly important to the test.
We already disallow mixing SEH and C++ exceptions, and
mixing SEH and Objective-C exceptions seems to not work (see PR52233).
Emitting an error is friendlier than crashing.
Differential Revision: https://reviews.llvm.org/D112157
Add relaxed. f32x4.min, f32x4.max, f64x2.min, f64x2.max. These are only
exposed as builtins, and require user opt-in.
Differential Revision: https://reviews.llvm.org/D112146
Currently we have a way to run a plugin if specified on the command line
after the main action, and ways to unconditionally run the plugin before
or after the main action, but no way to run a plugin if specified on the
command line before the main action.
This introduces the missing option.
This is helpful because -clear-ast-before-backend clears the AST before
codegen, while some plugins may want access to the AST.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D112096
When we added support for if consteval, we accidentally formed a discarded
statement evaluation context for the branch-not-taken. However, a discarded
statement is a property of an if constexpr statement, not an if consteval
statement (https://eel.is/c++draft/stmt.if#2.sentence-2). This turned out to
cause issues when deducing the return type from a function with a consteval if
statement -- we wouldn't consider the branch-not-taken when deducing the return
type.
This fixes PR52206.
Note, there is additional work left to be done. We need to track discarded
statement and immediate evaluation contexts separately rather than as being
mutually exclusive.
This change implements new DAG nodes TABLE_GET/TABLE_SET, and lowering
methods for load and stores of reference types from IR arrays. These
global LLVM IR arrays represent tables at the Wasm level.
Differential Revision: https://reviews.llvm.org/D111154
Some downstream users have plugins that -clear-ast-before-backend may
affect. Add an option to opt out.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D112100
Add i8x16 relaxed_swizzle instructions. These are only
exposed as builtins, and require user opt-in.
Differential Revision: https://reviews.llvm.org/D112022
Emit __clangast in custom section instead of named data segment
to find it while iterating sections.
This could be avoided if all data segements (the wasm sense) were
represented as their own sections (in the llvm sense).
This can be resolved by https://github.com/WebAssembly/tool-conventions/issues/138
And the on-disk hashtable in clangast needs to be aligned by 4 bytes,
so add paddings in name length field in custom section header.
The length of clangast section name can be represented in 1 byte
by leb128, and possible maximum pads are 3 bytes, so the section
name length won't be invalid in theory.
Fixes https://bugs.llvm.org/show_bug.cgi?id=35928
Differential Revision: https://reviews.llvm.org/D74531
When building a multiarch MachO binary, previously the intermediate
output file names would contain random characters. On macOS this
filename, since it's used when linking, ended up being used as a
stable-ish identifier for the adhoc codesignature of the binary, leading
to non-reproducible binaries. This change uses the architecture, when
available, to create a stable, but unique, basename for the file.
Differential Revision: https://reviews.llvm.org/D111269
Representation of the file's last modification time depends on the file
system and isn't guaranteed to be in seconds. Cast to seconds explicitly
and tighten the test case to check the magnitude of the calculated
value, so we can catch passing milliseconds or nanoseconds.
rdar://83915615
Differential Revision: https://reviews.llvm.org/D111205
This patch attempts to restrict the following P10 options:
```
-mprefixed
-mpcrel
-mpaired-vector-memops
```
To P10 only. This will prevent the use of these options on P9 and earlier.
The behaviour of this patch looks like the following on pre-P10:
```
$ clang -mcpu=pwr9 -mpaired-vector-memops test.c -o test
error: option '-mpaired-vector-memops' cannot be specified without '-mcpu=pwr10'
$ clang -mcpu=pwr9 -mprefixed test.c -o test
error: option '-mprefixed' cannot be specified without '-mcpu=pwr10'
$ clang -mcpu=pwr9 -mprefixed -mpcrel test.c -o test
error: option '-mpcrel' cannot be specified without '-mcpu=pwr10 -mprefixed'
$ clang -mcpu=pwr9 -mpcrel -mprefixed test.c -o test
error: option '-mpcrel' cannot be specified without '-mcpu=pwr10 -mprefixed'
$ clang -mcpu=pwr9 -mpcrel test.c -o test
error: option '-mpcrel' cannot be specified without '-mcpu=pwr10 -mprefixed'
```
Differential Revision: https://reviews.llvm.org/D109652
This patch ensures that we always tune for a given CPU on AArch64
targets when the user specifies the "-mtune=xyz" flag. In the
AArch64Subtarget if the tune flag is unset we use the CPU value
instead.
I've updated the release notes here:
llvm/docs/ReleaseNotes.rst
and added tests here:
clang/test/Driver/aarch64-mtune.c
Differential Revision: https://reviews.llvm.org/D110258
This mode never works (mismatching crtbeginT.o and crtendS.o) and probably
unsupported by GCC on glibc based Linux distro (incorrect crtbeginT.o causes
linker error) but makes sense (-shared means building a shared object, -static
means avoid shared object dependencies) and can be used on musl based Linux
distro.
mingw supports this mode as well.
Now that the legacy PM is deprecated for the optimization pipeline, we
can start deleting legacy PM tests.
For tests that test both PMs, merge the RUN lines.
Delete tests specific to the legacy PM.
By default clang emits complete contructors as alias of base constructors if they are the same.
The backend is supposed to emit symbols for the alias, otherwise it causes undefined symbols.
@yaxunl observed that this issue is related to the llvm options `-amdgpu-early-inline-all=true`
and `-amdgpu-function-calls=false`. This issue is resolved by only inlining global values
with internal linkage. The `getCalleeFunction()` in AMDGPUResourceUsageAnalysis also had
to be extended to support aliases to functions. inline-calls.ll was corrected appropriately.
Reviewed By: yaxunl, #amdgpu
Differential Revision: https://reviews.llvm.org/D109707
This appears to be a think-o where the developer was trying to check for a null
pointer but was actually checking (redundantly) whether the optional held a
valid value or not. We now properly check the pointer for null.
This fixes PR51547.
When using explicit Clang modules, some declarations might unexpectedly become invisible.
This is caused by the mechanism that loads PCM files passed via `-fmodule-file=<path>` and creates an `IdentifierInfo` for the module name. The `IdentifierInfo` creation takes place when the `ASTReader` is in a weird state, with modules that are loaded but not yet set up properly. This patch delays the creation of `IdentifierInfo` until the `ASTReader` is done with reading the PCM.
Note that the `-fmodule-file=<name>=<path>` form of the argument doesn't suffer from this issue, since it doesn't create `IdentifierInfo` for the module name.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111543
The clang behavior was poor before this patch:
```
void B::foo() override {}
// Before: clang emited "expcted function body after function
// declarator", and skiped all contents until it hits a ";", the
// following function f() is discarded.
// VS
// Now "override is not allowed" with a remove fixit, and following f()
// is retained.
void f();
```
Differential Revision: https://reviews.llvm.org/D111883
Previously, we reported the same value as for C17, now we report 202000L, which
is the same value currently used by GCC.
Once C23 ships, this value will be bumped to the correct date.
The C and C++ standards require the argument to __has_cpp_attribute and
__has_c_attribute to be expanded ([cpp.cond]p5). It would make little sense
to expand the argument to those operators but not expand the argument to
__has_attribute and __has_declspec, so those were both also changed in this
patch.
Note that it might make sense for the other builtins to also expand their
argument, but it wasn't as clear to me whether the behavior would be correct
there, and so they were left for a future revision.
How many place you need to modify when implementing a new extension for RISC-V?
At least 7 places as I know:
- Add new SubtargetFeature at RISCV.td
- -march parser in RISCV.cpp
- RISCVTargetInfo::initFeatureMap@RISCV.cpp for handling feature vector.
- RISCVTargetInfo::getTargetDefines@RISCV.cpp for pre-define marco.
- Arch string parser for ELF attribute in RISCVAsmParser.cpp
- ELF attribute emittion in RISCVAsmParser.cpp, and make sure it's in
canonical order...
- ELF attribute emittion in RISCVTargetStreamer.cpp, and again, must in
canonical order...
And now, this patch provide an unified infrastructure for handling (almost)
everything of RISC-V arch string.
After this patch, you only need to update 2 places for implement an extension
for RISC-V:
- Add new SubtargetFeature at RISCV.td, hmmm, it's hard to avoid.
- Add new entry to RISCVSupportedExtension@RISCVISAInfo.cpp or
SupportedExperimentalExtensions@RISCVISAInfo.cpp .
Most codes are come from existing -march parser, but with few new feature/bug
fixes:
- Accept version for -march, e.g. -march=rv32i2p0.
- Reject version info with `p` but without minor version number like `rv32i2p`.
Differential Revision: https://reviews.llvm.org/D105168
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
RecordMemberExprValidator was not looking through ElaboratedType
nodes when looking for candidates which occur in base classes.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D111830
Mimic the behavior of including headers where a system includer makes an
includee a system header too.
rdar://84049469
Differential Revision: https://reviews.llvm.org/D111476
By default clang emits complete contructors as alias of base constructors if they are the same.
The backend is supposed to emit symbols for the alias, otherwise it causes undefined symbols.
@yaxunl observed that this issue is related to the llvm options `-amdgpu-early-inline-all=true`
and `-amdgpu-function-calls=false`. This issue is resolved by only inlining global values
with internal linkage. The `getCalleeFunction()` in AMDGPUResourceUsageAnalysis also had
to be extended to support aliases to functions. inline-calls.ll was corrected appropriately.
Reviewed By: yaxunl, #amdgpu
Differential Revision: https://reviews.llvm.org/D109707
This patch remove the override in AIX target,
so the int128 is enabled in 64 bit mode or with ForceEnableInt128.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D111078
This was committed as ec6c847179, but then reverted after a failure
in: https://lab.llvm.org/buildbot/#/builders/84/builds/13983
I was not able to reproduce the problem, but I added an extra check
for a NULL QualType just in case.
Original comit message:
The patch adds missing diagnostics for cases like:
float F3 = ((__float128)F1 * (__float128)F2) / 2.0f;
Sema::checkDeviceDecl (renamed to checkTypeSupport) is changed to work
with a type without the corresponding ValueDecl. It is also refactored
so that host diagnostics for unsupported types can be added here as
well.
Differential Revision: https://reviews.llvm.org/D109315
'(self.prop)' produces a surprising AST where ParenExpr
resides inside `PseudoObjectExpr.
This breaks ObjCMethodCall::getMessageKind() which in turn causes us
to perform unnecessary dynamic dispatch bifurcation when evaluating
body-farmed property accessors, which in turn causes us
to explore infeasible paths.
Looks like lldb has some issues with this - somehow it causes lldb to
treat a "char[N]" type as an array of chars (prints them out
individually) but a "char [N]" is printed as a string. (even though the
DWARF doesn't have this string in it - it's something to do with the
string lldb generates for itself using clang)
This reverts commit 277623f4d5.
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
Not all constants are emitted within the context of a function, so use
the module's ASTContext instead because 1) that's the same as the
current function ASTContext, and 2) the module can never be null.
Fixes PR50787.
It seems that Clang 11 regressed functionality that was working in
Clang 10 regarding calling a few overloaded operators in an immediate
context. Specifically, we were not checking for immediate invocations
of array subscripting and the arrow operators, but we properly handle
the other overloaded operators.
This fixes the two problematic operators and adds some test coverage to
show they're equivalent to calling the operator directly.
This addresses PR50779.
I've removed the Zbs W instructions that are not part of the frozen spec.
References to B as an extension name have been removed. Tests are updated or split accordingly.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D110669
The solver's symbol simplification mechanism was not able to handle cases
when a symbol is simplified to a concrete integer. This patch adds the
capability.
E.g., in the attached lit test case, the original symbol is `c + 1` and
it has a `[0, 0]` range associated with it. Then, a new condition `c == 0`
is assumed, so a new range constraint `[0, 0]` comes in for `c` and
simplification kicks in. `c + 1` becomes `0 + 1`, but the associated
range is `[0, 0]`, so now we are able to realize the contradiction.
Differential Revision: https://reviews.llvm.org/D110913
Adds initial parsing and sema for the 'adjust_args' clause.
Note that an AST clause is not created as it instead adds its expressions
to the OMPDeclareVariantAttr.
Differential Revision: https://reviews.llvm.org/D99905
During explicit modular build, PCM files are typically specified via the `-fmodule-file=<path>` command-line option. Early during the compilation, Clang uses the `ASTReader` to read their contents and caches the result so that the module isn't loaded implicitly later on. A listener is attached to the `ASTReader` to collect names of the modules read from the PCM files. However, if the PCM has already been loaded previously via PCH:
1. the `ASTReader` doesn't do anything for the second time,
2. the listener is not invoked at all,
3. the module load result is not cached,
4. the compilation fails when attempting to load the module implicitly later on.
This patch solves this problem by attaching the listener to the `ASTReader` for PCH reading as well.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D111560
The builtin __rlwnm is currently constrained to accept only constants
for the shift parameter but the instructions emitted for it have no such
constraint, this patch allows the builtins to accept variable shift.
Reviewed By: NeHuang, amyk
Differential Revision: https://reviews.llvm.org/D111229
If the `assume-controlled-environment` is `true`, we should expect `getenv()`
to succeed, and the result should not be considered tainted.
By default, the option will be `false`.
Reviewed By: NoQ, martong
Differential Revision: https://reviews.llvm.org/D111296
The `getenv()` function might return `NULL` just like any other function.
However, in case of `getenv()` a state-split seems justified since the
programmer should expect the failure of this function.
`secure_getenv(const char *name)` behaves the same way but is not handled
right now.
Note that `std::getenv()` is also not handled.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111245
This reverts commit 97f0c63783.
As discussed in https://reviews.llvm.org/D110684, it increased the
compile time and the binary size of clang more than 1%. I reverted
this patch first to think about a better way to do it.
GCC 9.1 removed Intel MPX support. Linux kernel removed MPX in 2019.
glibc 2.35 will remove MPX.
Our support is limited: we support assembling of bndmov but not bnd.
Just remove it.
Reviewed By: pengfei, skan
Differential Revision: https://reviews.llvm.org/D111517
Clarify the message provided when the analyzer catches the use of memory
that is allocated with size zero.
Differential Revision: https://reviews.llvm.org/D111655
This is the second part of p0388, dealing with overloads of list
initialization to incomplete array types. It extends the handling
added in D103088 to permit incomplete arrays. We have to record that
the conversion involved an incomplete array, and so (re-add) a bit flag
into the standard conversion sequence object. Comparing such
conversion sequences requires knowing (a) the number of array elements
initialized and (b) whether the initialization is of an incomplete array.
This also updates the web page to indicate p0388 is implemented (there
is no feature macro).
Differential Revision: https://reviews.llvm.org/D103908
This implements the new implicit conversion sequence to an incomplete
(unbounded) array type. It is mostly Richard Smith's work, updated to
trunk, testcases added and a few bugs fixed found in such testing.
It is not a complete implementation of p0388.
Differential Revision: https://reviews.llvm.org/D102645
`[[clang::fallthrough]]` has meaning for the CFG, but all other
StmtAttrs we currently have don't. So omit them, as AttributedStatements
with children cause several issues and there's no benefit in including
them.
Fixes PR52103 and PR49454. See PR52103 for details.
Differential Revision: https://reviews.llvm.org/D111568
To reduce the number of explicit builds of a single module, we can try to squash multiple occurrences of the module with different command-lines (and context hashes) by removing benign command-line options. The greatest contributors to benign differences between command-lines are the header search paths.
In this patch, the lookup cache in `HeaderSearch` is used to identify paths that were actually used when implicitly building the module during scanning. This information is serialized into the unhashed control block of the implicitly-built PCM. The dependency scanner then loads this and may use it to prune the header search paths before computing the context hash of the module and generating the command-line.
We could also prune the header search paths when serializing `HeaderSearchOptions` into the PCM. That way, we could do it only once instead of every load of the PCM file by dependency scanner. However, that would result in a PCM file whose contents don't produce the same context hash as the original build, which is probably highly surprising.
There is an alternative approach to storing extra information into the PCM: wire up preprocessor callbacks to capture the used header search paths on-the-fly during preprocessing of modularized headers (similar to what we currently do for the main source file and textual headers). Right now, that's not compatible with the fact that we do an actual implicit build producing PCM files during dependency scanning. The second run of dependency scanner loads the PCM from the first run, skipping the preprocessing altogether, which would result in different results between runs. We can revisit this approach when we stop building implicitly during dependency scanning.
Depends on D102923.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D102488
For dependency scanning, it would be useful to collect header search paths (provided on command-line via `-I` and friends) that were actually used during preprocessing. This patch adds that feature to `HeaderSearch` along with a new remark that reports such paths as they get used.
Previous version of this patch tried to use the existing `LookupFileCache` to report used paths via `HitIdx`. That doesn't work for `ComputeUserEntryUsage` (which is intended to be called *after* preprocessing), because it indexes used search paths by the file name. This means the values get overwritten when the code contains `#include_next`.
Note that `HeaderSearch` doesn't use `HeaderSearchOptions::UserEntries` directly. Instead, `InitHeaderSearch` pre-processes them (adds platform-specific paths, removes duplicates, removes paths that don't exist) and creates `DirectoryLookup` instances. This means we need a mechanism for translating between those two. It's not possible to go from `DirectoryLookup` back to the original `HeaderSearch`, so `InitHeaderSearch` now tracks the relationships explicitly.
Depends on D111557.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D102923
Add atomic_half types and builtins operating on the types from the
cl_ext_float_atomics extension.
Patch by Haonan Yang.
Differential Revision: https://reviews.llvm.org/D109740
Rename vfredsum and vfwredsum to vfredusum and vfwredusum. Add aliases for vfredsum and vfwredsum.
Reviewed By: luismarques, HsiangKai, khchen, frasercrmck, kito-cheng, craig.topper
Differential Revision: https://reviews.llvm.org/D105690
Current btf_tag is applied to declaration only.
Per discussion in https://reviews.llvm.org/D111199,
we plan to introduce btf_type_tag attribute for types.
So rename btf_tag to btf_decl_tag to make it easily
differentiable from btf_type_tag.
Differential Revision: https://reviews.llvm.org/D111588
Sequel patch to https://reviews.llvm.org/D111293.
Remove call to CodeGenFunction::InitTempAlloca() from OpenMP related
codegen part.
Also remove the metadata `!llvm.access.group` from the updated lit
tests.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D111316
In the original design, we levarage _mt intrinsics to define macros for
_m intrinsics. Such as,
```
__builtin_rvv_vadd_vv_i8m1_mt((vbool8_t)(op0), (vint8m1_t)(op1), (vint8m1_t)(op2), (vint8m1_t)(op3), (size_t)(op4), (size_t)VE_TAIL_AGNOSTIC)
```
However, we could not define generic interface for mask intrinsics any
more due to clang_builtin_alias only accepts clang builtins as its
argument.
In the example,
```
__rvv_overloaded
__attribute__((clang_builtin_alias(__builtin_rvv_vadd_vv_i8m1_mt)))
vint8m1_t vadd(vbool8_t op0, vint8m1_t op1, vint8m1_t op2, vint8m1_t
op3, size_t op4, size_t op5);
```
op5 is the tail policy argument. When users want to use vadd generic
interface for masked vector add, they need to specify tail policy in the
previous design. In this patch, we define _m intrinsics as clang
builtins to solve the problem.
Differential Revision: https://reviews.llvm.org/D110684
"darwin" is ambiguous. When there isn't a better source
of truth (e.g., SDKs), the driver will either interpret it
as "iOS" when cross-compiling to a different architecture,
or "the host" when not. That's now the case on AS Macs.
Update the test to more explicitly test the OS.
aarch64-mac-cpus.c already tests the mac-specific driver logic.
This reland commit 1131b1eb35, which
adds support to __attribute__((availability)) annotation for Fuchsia
platform. This patch also adds '-ffuchsia-api-level' to allow specify
Fuchsia API level from the command line.
Differential Revision: https://reviews.llvm.org/D108592
usage of an abstract class type within itself.
We were missing handling for deduction guides (which would assert),
friend declarations, and variable templates. We were mishandling inline
variables and other variables defined inside the class definition.
These diagnostics should be downgraded to warnings, or perhaps removed
entirely, once we implement P0929R2.
This reverts commit b875343873.
Per discussion in https://reviews.llvm.org/D111199, instead to make
existing btf_tag attribute as a type-or-decl attribute, we will
make existing btf_tag attribute as a decl only attribute, and
introduce btf_type_tag as a type only attribute. This will make
it easy for cases like typedef where an attribute may be applied
as either a type attribute or a decl attribute.
This patch adds support to __attribute__((availability)) annotation for
Fuchsia platform. This patch also adds '-ffuchsia-api-level' to allow
specify Fuchsia API level from the command line.
Differential Revision: https://reviews.llvm.org/D108592
When AnnotateAttr is on a function, AddGlobalAnnotations is only called
in CodeGenModule::EmitGlobalFunctionDefinition which means AnnotateAttr
on function declaration without function body will be ignored.
The patch will move AddGlobalAnnotations to
CodeGenModule::SetFunctionAttributes, so with or without function body,
the AnnotateAttr will get code gen for a function.
It'll help case when AnnotateAttr is on external function, and the
AnnotateAttr will be consumed in IR level.
For example, a pass to collect num of uses for functions with
__attribute((annotate("count_use"))) after optimizations,
As long as there's __attribute((annotate("count_use"))), function with
or without function body should be counted.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D111109
Patch by: python3kgae (Xiang Li)
armv9-a, armv9.1-a and armv9.2-a can be targeted using the -march option
both in ARM and AArch64.
- Armv9-A maps to Armv8.5-A.
- Armv9.1-A maps to Armv8.6-A.
- Armv9.2-A maps to Armv8.7-A.
- The SVE2 extension is enabled by default on these architectures.
- The cryptographic extensions are disabled by default on these
architectures.
The Armv9-A architecture is described in the Arm® Architecture Reference
Manual Supplement Armv9, for Armv9-A architecture profile
(https://developer.arm.com/documentation/ddi0608/latest).
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D109517
As for 128-bit floating points on PowerPC, compiler should have three
machine modes:
- IFmode, always IBM extended double
- KFmode, always IEEE 754R 128-bit floating point
- TFmode, matches the semantics for long double
This commit adds support for IF mode with its complex variant, IC mode.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D109950
The SSE4 header (smmintrin.h) should include SSSE3 (tmmintrin.h) instead
of SSE2 (emmintrin.h).
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D111482
Without this, the combination of `-ast-dump=json` and `-ast-dump-filter FILTER` produces invalid JSON: the first line is a string that says `Dumping $SOME_DECL_NAME: `.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D108441
C++20 and later allow you to pass no argument for the ... parameter in
a variadic macro, whereas earlier language modes and C disallow it.
We no longer diagnose in C++20 and later modes. This fixes PR51609.
In this case, we know statically that we're destroying the most-derived
class, so the vptr must already point to the current class and never
needs to be updated.
fae0dfa implemented the new __ibm128 type, this patch enables its
complex form.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D109948
This patch adds support for the
`__kmpc_get_hardware_num_threads_in_block` function that returns the
number of threads. This was missing in the new runtime and was used by
the AMDGPU plugin which prevented it from using the new runtime. This
patchs also unified the interface for getting the thread numbers in the
frontend.
Originally authored by jdoerfert.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D111475
There are functions where we do not want function instrumentation which is why we have `__attribute__((no_instrument_function))`. Extending this functionality to disable instrumentation for Objective-C methods as well. Objective C methods like `+load` run premain and having instrumentation on them causes runtime errors depending on the implementation of `__cyg_profile_func_enter` etc. functions
Reviewed By: rjmccall, aaron.ballman
Differential Revision: https://reviews.llvm.org/D111286
Distinct lambda expressions are always considered non-equivalent, so two
token-for-token identical function declarations whose signatures involve
lambda-expressions declare distinct functions.
__builtin_assume_aligned's second parameter is size_t, which may be 32 bits.
We can't pass 2^32 when that happens. Update tests accordingly.
Example broken bot due to D111250:
https://lab.llvm.org/buildbot/#/builders/171/builds/4531
Previously if you passed an absolute path to clang, where only part of
the path to the file was remapped, it would result in the file's DIFile
being stored with a duplicate path, for example:
```
!DIFile(filename: "./ios/Sources/bar.c", directory: "./ios/Sources")
```
This change handles absolute paths, specifically in the case they are
remapped to something relative, and uses the dirname for the directory,
and basename for the filename.
This also adds a test verifying this behavior for more standard uses as
well.
Differential Revision: https://reviews.llvm.org/D111352
The following tests are failing due to missing DWARF sections. This patch sets these tests as XFAIL/DISABLED on AIX until a more permanent solution is implemented.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D111336
non-Darwin ObjC runtimes:
- Use the same logic the Darwin runtime does for inferring that a
receiver is non-null and therefore doesn't require null checks.
Previously we weren't skipping these for non-super dispatch.
- Emit a null check when there's a consumed parameter so that we can
destroy the argument if the call doesn't happen. This mostly
involves extracting some common logic from the Darwin-runtime code.
- Generate a zero aggregate by zeroing the same memory that was used
in the method call instead of zeroing separate memory and then
merging them with a phi. This uses less memory and avoids unnecessary
copies.
- Emit zero initialization, and generate zero values in phis, using
the proper zero-value routines instead of assuming that the zero
value of the result type has a bitwise-zero representation.
An archive containing device code object files can be passed to
clang command line for linking. For each given offload target
it creates a device specific archives which is either passed to llvm-link
if the target is amdgpu, or to clang-nvlink-wrapper if the target is
nvptx. -L/-l flags are used to specify these fat archives on the command
line. E.g.
clang++ -fopenmp -fopenmp-targets=nvptx64 main.cpp -L. -lmylib
It currently doesn't support linking an archive directly, like:
clang++ -fopenmp -fopenmp-targets=nvptx64 main.cpp libmylib.a
Linking with x86 offload also does not work.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D105191
Original commit message: "
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
"
This patch also works around PR49692 and finds a way to use llvm::consumeError
in rtti mode.
Differential revision: https://reviews.llvm.org/D107049
At this point it looks like a B extension will never exist. Instead
Zba, Zbb, Zbc, and Zbs are individual extensions being ratified
together as a package. Unknown at this time when or if the other
Zb* extensions will be ratified.
This patch removes references to the B extension. I've updated and
split tests accordingly.
This has been split from D110669 to make review a little easier.
Differential Revision: https://reviews.llvm.org/D111338
This patch adds two flags to be supported for the new runtime. The flags
are `-fopenmp-assume-threads-oversubscription` and
-fopenmp-assume-teams-oversubscription`. These add global values that
can be checked by the work sharing runtime functions to make better
judgements about how to distribute work between the threads.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111348
When have ObjCInterfaceDecl with the same name in 2 different modules,
hitting the assertion
> Assertion failed: (Index < RL->getFieldCount() && "Ivar is not inside record layout!"),
> function lookupFieldBitOffset, file llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp, line 3434.
on accessing an ivar inside a method. The assertion happens because
ivar belongs to one module while its containing interface belongs to
another module and then we fail to find the ivar inside the containing
interface. We already keep a single ObjCInterfaceDecl definition in
redecleration chain and in this case containing interface was correct.
The issue is with ObjCIvarDecl. IVar decl for IRGen is taken from
ObjCIvarRefExpr that is created in `Sema::BuildIvarRefExpr` using ivar
decl returned from `Sema::LookupIvarInObjCMethod`. And ivar lookup
returns a wrong decl because basically we take the first ObjCIvarDecl
found in `ASTReader::FindExternalVisibleDeclsByName` (called by
`DeclContext::lookup`). And in `ASTReader.Lookups` lookup table for a
wrong module comes first because `ASTReader::finishPendingActions`
processes `PendingUpdateRecords` in reverse order and the first
encountered ObjCIvarDecl will end up the last in `ASTReader.Lookups`.
Fix by merging ObjCIvarDecl from different modules correctly and by
using a canonical one in IRGen.
rdar://82854574
Differential Revision: https://reviews.llvm.org/D110280
Some subprojects like compiler-rt define the `darwin` feature in their
lit config, but clang does not do that, so we need to use the global
`system-darwin` here instead.
Differential Revision: https://reviews.llvm.org/D111267
An archive containing device code object files can be passed to
clang command line for linking. For each given offload target
it creates a device specific archives which is either passed to llvm-link
if the target is amdgpu, or to clang-nvlink-wrapper if the target is
nvptx. -L/-l flags are used to specify these fat archives on the command
line. E.g.
clang++ -fopenmp -fopenmp-targets=nvptx64 main.cpp -L. -lmylib
It currently doesn't support linking an archive directly, like:
clang++ -fopenmp -fopenmp-targets=nvptx64 main.cpp libmylib.a
Linking with x86 offload also does not work.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D105191
This reverts c7f16ab3e3 / r109694 - which
suggested this was done to improve consistency with the gdb test suite.
Possible that at the time GCC did not canonicalize integer types, and so
matching types was important for cross-compiler validity, or that it was
only a case of over-constrained test cases that printed out/tested the
exact names of integer types.
In any case neither issue seems to exist today based on my limited
testing - both gdb and lldb canonicalize integer types (in a way that
happens to match Clang's preferred naming, incidentally) and so never
print the original text name produced in the DWARF by GCC or Clang.
This canonicalization appears to be in `integer_types_same_name_p` for
GDB and in `TypeSystemClang::GetBasicTypeEnumeration` for lldb.
(I tested this with one translation unit defining 3 variables - `long`,
`long (*)()`, and `int (*)()`, and another translation unit that had
main, and a function that took `long (*)()` as a parameter - then
compiled them with mismatched compilers (either GCC+Clang, or
Clang+(Clang with this patch applied)) and no matter the combination,
despite the debug info for one CU naming the type "long int" and the
other naming it "long", both debuggers printed out the name as "long"
and were able to correctly perform overload resolution and pass the
`long int (*)()` variable to the `long (*)()` function parameter)
Did find one hiccup, identified by the lldb test suite - that CodeView
was relying on these names to map them to builtin types in that format.
So added some handling for that in LLVM. (these could be split out into
separate patches, but seems small enough to not warrant it - will do
that if there ends up needing any reverti/revisiting)
Differential Revision: https://reviews.llvm.org/D110455
The patch implements header-only support for testure lookups.
The patch has been tested on a source file with all possible combinations of
argument types supported by CUDA headers, compiled and verified that the
generated instructions and their parameters match the code generated by NVCC.
Unfortunately, compiling texture code requires CUDA headers and can't be tested
in clang itself. The test will need to be added to the test-suite later.
While generated code compiles and seems to match NVCC, I do not have any code
that uses textures that I could test correctness of the implementation. Hence
the experimental status.
Differential Revision: https://reviews.llvm.org/D110089
declaration.
Names starting with an underscore are reserved at the global scope, so
cannot be used as the name of an extern "C" symbol in any scope because
such usages conflict with a name at global scope.
Also do not warn on `#define _foo` or `#undef _foo`.
Only global scope names starting with _[a-z] are reserved, not the use
of such an identifier in any other context.
adjustMemberOfForLambdaCaptures.
The problem is happening when user passes lambda function with reference
type in the map clause.
The natural of the problem when processing generateInfoForCapture,
the BasePointer is generated with new load for a lambda variable with
reference type. It is not expected in adjustMemberOfForLambdaCaptures.
One way to fix this is to skipping call to generateInfoForCapture for
map(to:lambda). The map info will be generated later in the call to
generateDefaultMapInfo samiler as firsprivate clase.
This to fix https://bugs.llvm.org/show_bug.cgi?id=52071
Differential Revision:https://reviews.llvm.org/D111115
This is to save memory for Clang compiles.
Measuring building PassBuilder.cpp under /usr/bin/time, max rss goes from 0.93GB to 0.7GB.
This does not turn it by default yet.
I've turned on the option locally and run it over a good amount of files without any issues.
For more background, see
https://lists.llvm.org/pipermail/cfe-dev/2021-September/068930.html.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D111105
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Currently the max alignment representable is 1GB, see D108661.
Setting the align of an object to 4GB is desirable in some cases to make sure the lower 32 bits are clear which can be used for some optimizations, e.g. https://crbug.com/1016945.
This uses an extra bit in instructions that carry an alignment. We can store 15 bits of "free" information, and with this change some instructions (e.g. AtomicCmpXchgInst) use 14 bits.
We can increase the max alignment representable above 4GB (up to 2^62) since we're only using 33 of the 64 values, but I've just limited it to 4GB for now.
The one place we have to update the bitcode format is for the alloca instruction. It stores its alignment into 5 bits of a 32 bit bitfield. I've added another field which is 8 bits and should be future proof for a while. For backward compatibility, we check if the old field has a value and use that, otherwise use the new field.
Updating clang's max allowed alignment will come in a future patch.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D110451
Clang would reject
#pragma omp for
#pragma omp tile sizes(P)
for (int i = 0; i < 128; ++i) {}
where P is a template parameter, but the loop itself is not
template-dependent. Because P context-dependent, the TransformedStmt
cannot be generated and therefore is nullptr (until the template is
instantiated by TreeTransform). The OMPForDirective would still expect
the a loop is the dependent context and trigger an error.
Fix by introducing a NumGeneratedLoops field to OMPLoopTransformation.
This is used to distinguish the case where no TransformedStmt will be
generated at all (e.g. #pragma omp unroll full) and template
instantiation is needed. In the latter case, delay resolving the
iteration space like when the for-loop itself is template-dependent
until the template instatiation.
A more radical solution would always delay the iteration space analysis
until template instantiation, but would also break many test cases.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D111124
There is an error in the implementation of the logic of reaching the `Unknonw` tristate in CmpOpTable.
```
void cmp_op_table_unknownX2(int x, int y, int z) {
if (x >= y) {
// x >= y [1, 1]
if (x + z < y)
return;
// x + z < y [0, 0]
if (z != 0)
return;
// x < y [0, 0]
clang_analyzer_eval(x > y); // expected-warning{{TRUE}} expected-warning{{FALSE}}
}
}
```
We miss the `FALSE` warning because the false branch is infeasible.
We have to exploit simplification to discover the bug. If we had `x < y`
as the second condition then the analyzer would return the parent state
on the false path and the new constraint would not be part of the State.
But adding `z` to the condition makes both paths feasible.
The root cause of the bug is that we reach the `Unknown` tristate
twice, but in both occasions we reach the same `Op` that is `>=` in the
test case. So, we reached `>=` twice, but we never reached `!=`, thus
querying the `Unknonw2x` column with `getCmpOpStateForUnknownX2` is
wrong.
The solution is to ensure that we reached both **different** `Op`s once.
Differential Revision: https://reviews.llvm.org/D110910
The default wchar type is different on AIX vs. Linux. When this test is run on
AIX, WCHAR_T_TYPE ends up being set to int. This is incorrect as the default
wchar type on AIX is actually unsigned short, and setting the type incorrectly
causes the expected errors to not be found.
This patch sets the type correctly (to unsigned short) for AIX.
Differential Revision: https://reviews.llvm.org/D110428
This simple change addresses a special case of structure/pointer
aliasing that produced different symbolvals, leading to false positives
during analysis.
The reproducer is as simple as this.
```lang=C++
struct s {
int v;
};
void foo(struct s *ps) {
struct s ss = *ps;
clang_analyzer_dump(ss.v); // reg_$1<int Element{SymRegion{reg_$0<struct s *ps>},0 S64b,struct s}.v>
clang_analyzer_dump(ps->v); //reg_$3<int SymRegion{reg_$0<struct s *ps>}.v>
clang_analyzer_eval(ss.v == ps->v); // UNKNOWN
}
```
Acks: Many thanks to @steakhal and @martong for the group debug session.
Reviewed By: steakhal, martong
Differential Revision: https://reviews.llvm.org/D110625
The builtin for vec_orc has support for the following two signatures,
but currently the compiler marks it ambiguous:
vector float vec_orc(vector float, vector float)
vector double vec_orc(vector double, vector double)
This patch implements these two builtins.
Differential revision: https://reviews.llvm.org/D110858
This also removes the need to disable the mandatory inlining phase in
tests.
In a departure from the previous remark, we don't output a 'cost' in
this case, because there's no such thing. We just report that inlining
happened because of the attribute.
Differential Revision: https://reviews.llvm.org/D110891
This patch allows the use of __vector_quad and __vector_pair, PPC MMA builtin
types, on all PowerPC 64-bit compilation units. When these types are
made available the builtins that use them automatically become available
so semantic checking for mma and pair vector memop __builtins is also
expanded to ensure these builtin function call are only allowed on
Power10 and new architectures. All related test cases are updated to
ensure test coverage.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D109599
Modify the IfStmt node to suppoort constant evaluated expressions.
Add a new ExpressionEvaluationContext::ImmediateFunctionContext to
keep track of immediate function contexts.
This proved easier/better/probably more efficient than walking the AST
backward as it allows diagnosing nested if consteval statements.
We keep a map from function name to source location so we don't have to
do it via looking up a source location from the AST. However, since
function names can be long, we actually use a hash of the function name
as the key.
Additionally, we can't rely on Clang's printing of function names via
the AST, so we just demangle the name instead.
This is necessary to implement
https://lists.llvm.org/pipermail/cfe-dev/2021-September/068930.html.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D110665
Per the GCC info page:
If the function is declared 'extern', then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if
you had only declared the function, and had not defined it.
Respect that behavior for inline builtins: keep the original definition, and
generate a copy of the declaration suffixed by '.inline' that's only referenced
in direct call.
This fixes holes in c3717b6858.
Differential Revision: https://reviews.llvm.org/D111009
The builtins: `__compare_and_swaplp`, `__fetch_and_addlp`,
` __fetch_and_andlp`, `__fetch_and_orlp`, `__fetch_and_swaplp` are
64 bit only. This patch ensures the compiler produces an error in 32 bit mode.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D110824
by Raul Penacoba.
The size of kmp_depend_info and the number of dependencies are computed multiplying the iterator sizes, which not right.
Now size is computed as:
itersize1*numclausedeps1 + itersize2*numclausedeps2 + ... + itersizeN*numclausedepsN
where itersizeX is the size of the iterator and numclausedepsX the number of dependencies in that depend clause.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D111045