After the original commit ([[ https://reviews.llvm.org/rL304088 | rL304088 ]]) was reverted, a discussion in llvm-dev was opened on 'how to accomplish this task'.
In the discussion we concluded that the best way to achieve our goal (which is to automate the folding tables and remove the manually maintained tables) is:
# Commit the tablegen backend disabled by default.
# Proceed with an incremental updating of the manual tables - while checking the validity of each added entry.
# Repeat previous step until we reach a state where the generated and the manual tables are identical. Then we can safely remove the manual tables and include the generated tables instead.
# Schedule periodical (1 week/2 weeks/1 month) runs of the pass:
- if changes appear (new entries):
- make sure the entries are legal
- If they are not, mark them as illegal to folding
- Commit the changes (if there are any).
CMake flag added for this purpose is "X86_GEN_FOLD_TABLES". Building with this flags will run the pass and emit the X86GenFoldTables.inc file under build/lib/Target/X86/ directory which is a good reference for any developer who wants to take part in the effort of completing the current folding tables.
Differential Revision: https://reviews.llvm.org/D38028
llvm-svn: 315173
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
LLVM compiler recognizes opportunities to transform a branch into IR select instruction(s) - later it will be lowered into X86::CMOV instruction, assuming no other optimization eliminated the SelectInst.
However, it is not always profitable to emit X86::CMOV instruction. For example, branch is preferable over an X86::CMOV instruction when:
1. Branch is well predicted
2. Condition operand is expensive, compared to True-value and the False-value operands
In CodeGenPrepare pass there is a shallow optimization that tries to convert SelectInst into branch, but it is not enough.
This commit, implements machine optimization pass that converts X86::CMOV instruction(s) into branch, based on a conservative heuristic.
Differential Revision: https://reviews.llvm.org/D34769
llvm-svn: 308142
In testing, we've found yet another miscompile caused by the new tables.
And this one is even less clear how to fix (we could teach it to fold
a 16-bit load instead of the 32-bit load it wants, or block folding
entirely).
Also, the approach to excluding instructions seems increasingly to not
scale well.
I have left a more detailed analysis on the review log for the original
patch (https://reviews.llvm.org/D32684) along with suggested path
forward. I will land an additional test case that I wrote which covers
the code that was miscompiling (folding into the output of `pextrw`) in
a subsequent commit to keep this a pure revert.
For each commit reverted here, I've restricted the revert to the
non-test code touching the x86 fold table emission until the last commit
where I did revert the test updates. This means the *new* test cases
added for `insertps` and `xchg` remain untouched (and continue to pass).
Reverted commits:
r304540: [X86] Don't fold into memory operands into insertps in the ...
r304347: [TableGen] Adapt more places to getValueAsString now ...
r304163: [X86] Don't fold away the memory operand of an xchg.
r304123: Don't capture a temporary std::string in a StringRef.
r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..."
Original commit was in r304088, and after a string of fixes was reverted
previously in r304121 to fix build bots, and then re-landed in r304122.
llvm-svn: 304762
This was reverted due to buildbot breakages and I was not familiar
with this code to investigate it. But while trying to get a
useful backtrace for the author, it turns out the fix was very
obvious. Resubmitting this patch as is, and will submit the
fix in a followup so that the fix is not hidden in the larger
CL.
llvm-svn: 304122
This reverts commit 28cb1003507f287726f43c771024a1dc102c45fe as well
as all subsequent followups. llvm-tblgen currently segfaults with
this change, and it seems it has been broken on the bots all
day with no fixes in preparation. See, for example:
http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/
llvm-svn: 304121
X86 backend holds huge tables in order to map between the register and memory forms of each instruction.
This TableGen Backend automatically generated all these tables with the appropriate flags for each entry.
Differential Revision: https://reviews.llvm.org/D32684
llvm-svn: 304088
X86EvexToVex machine instruction pass compresses EVEX encoded instructions by replacing them with their identical VEX encoded instructions when possible.
It uses manually supported 2 large tables that map the EVEX instructions to their VEX ideticals.
This TableGen backend replaces the tables by automatically generating them.
Differential Revision: https://reviews.llvm.org/D30451
llvm-svn: 297127
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.
In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.
Differential revision: https://reviews.llvm.org/D28489
llvm-svn: 293737
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
Register Calling Convention defines a new behavior for v64i1 types.
This type should be saved in GPR.
However for 32 bit machine we need to split the value into 2 GPRs (because each is 32 bit).
Differential Revision: https://reviews.llvm.org/D26181
llvm-svn: 287217
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
llvm-svn: 286935
X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.
Patch by Farhana Aleen
Differential revision: http://reviews.llvm.org/D24681
llvm-svn: 284260
This helped to improved memory-folding and register coalescing optimizations.
Also, this patch fixed the tracker #17229.
Reviewer: Craig Topper.
Differential Revision: https://reviews.llvm.org/D23108
llvm-svn: 278431
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
The original commit tried inserting an 8bit-subreg into a GR32 (not GR32_ABCD)
which was not appreciated by fast regalloc on 32-bit.
llvm-svn: 274802
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.
Differential Revision: http://reviews.llvm.org/D21774
llvm-svn: 274692
with an additional fix to make RegAllocFast ignore undef physreg uses. It would
previously get confused about the "push %eax" instruction's use of eax. That
method for adjusting the stack pointer is used in X86FrameLowering::emitSPUpdate
as well, but since that runs after register-allocation, we didn't run into the
RegAllocFast issue before.
llvm-svn: 269949
This patch moves the expansion of WIN_ALLOCA pseudo-instructions
into a separate pass that walks the CFG and lowers the instructions
based on a conservative estimate of the offset between the stack
pointer and the lowest accessed stack address.
The goal is to reduce binary size and run-time costs by removing
calls to _chkstk. While it doesn't fix all the code quality problems
with inalloca calls, it's an incremental improvement for PR27076.
Differential Revision: http://reviews.llvm.org/D20263
llvm-svn: 269828
Add new x86 pass which replaces address calculations in load or store instructions with def register of existing LEA (must be in the same basic block), if the LEA calculates address that differs only by a displacement. Works only with -Os or -Oz.
Differential Revision: http://reviews.llvm.org/D13294
llvm-svn: 254712
The problem was that I slipped a change required for shrink-wrapping, namely I
used getFirstTerminator instead of the getLastNonDebugInstr that was here before
the refactoring, whereas the surrounding code is not yet patched for that.
Original message:
[X86] Refactor the prologue emission to prepare for shrink-wrapping.
- Add a late pass to expand pseudo instructions (tail call and EH returns).
Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.
NFC.
Related to <rdar://problem/20821487>
llvm-svn: 238035
Revert "[X86] Refactor the prologue emission to prepare for shrink-wrapping."
This reverts commit 6b3b93fc8b68a2c806aa992ee4bd3d7f61898d4b.
This reverts commit ab0b15dff8539826283a59c2dd700a18a9680e0f.
llvm-svn: 238011
- Add a late pass to expand pseudo instructions (tail call and EH returns).
Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.
NFC.
Related to <rdar://problem/20821487>
llvm-svn: 237977
This reverts commit r236360.
This change exposed a bug in WinEHPrepare by opting win32 code into EH
preparation. We already knew that WinEHPrepare has bugs, and is the
status quo for x64, so I don't think that's a reason to hold off on this
change. I disabled exceptions in the sanitizer tests in r236505 and an
earlier revision.
llvm-svn: 236508
This pass is responsible for constructing the EH registration object
that gets linked into fs:00, which is all it does in this change. In the
future, it will also insert stores to update the EH state number.
I considered keeping this functionality in WinEHPrepare, but it's pretty
separable and X86 specific. It has conceptually very little to do with
the task of WinEHPrepare, which is currently outlining. WinEHPrepare is
also in theory useful on ARM, but this logic is pretty x86 specific.
Reviewers: andrew.w.kaylor, majnemer
Differential Revision: http://reviews.llvm.org/D9422
llvm-svn: 236339
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
(Re-commit of r227728)
Differential Revision: http://reviews.llvm.org/D6789
llvm-svn: 227752
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a
reserved call frame), and perform rudimentary call folding. It still doesn't
have a heuristic, so it is enabled only for optsize/minsize, with stack
alignment <= 8, where it ought to be a fairly clear win.
Differential Revision: http://reviews.llvm.org/D6789
llvm-svn: 227728
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
llvm-svn: 217928
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
llvm-svn: 212119
I think, in principle, intrinsics_gen may be added explicitly.
That said, it can be added incidentally, since each target already has dependencies to llvm-tblgen.
Almost all source files depend on both CommonTaleGen and intrinsics_gen.
Explicit add_dependencies() have been pruned under lib/Target.
llvm-svn: 195929
add_public_tablegen_target adds *CommonTableGen to LLVM_COMMON_DEPENDS.
LLVM_COMMON_DEPENDS affects add_llvm_library (and other add_target stuff) within its scope.
llvm-svn: 195927
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
llvm-svn: 187780
latency for certain models of the Intel Atom family, by converting
instructions into their equivalent LEA instructions, when it is both
useful and possible to do so.
llvm-svn: 180573