Summary:
The getClobberingMemoryAccess API checks for clobbering accesses in a loop by walking the backedge. This may check if a memory access is being
clobbered by the loop in a previous iteration, depending how smart AA got over the course of the updates in MemorySSA (it does not occur when built from scratch).
If no clobbering access is found inside the loop, it will optimize to an access outside the loop. This however does not mean that access is safe to sink.
Given:
```
for i
load a[i]
store a[i]
```
The access corresponding to the load can be optimized to outside the loop, and the load can be hoisted. But it is incorrect to sink it.
In order to sink the load, we'd need to check no Def clobbers the Use in the same iteration. With this patch we currently restrict sinking to either
Defs not existing in the loop, or Defs preceding the load in the same block. An easy extension is to ensure the load (Use) post-dominates all Defs.
Caught by PR42294.
This issue also shed light on the converse problem: hoisting stores in this same scenario would be illegal. With this patch we restrict
hoisting of stores to the case when their corresponding Defs are dominating all Uses in the loop.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63582
llvm-svn: 363982
Summary:
This is unfortunately needed for correctness, if we are to extend the tolerance of the update API to the way simple loop unswitch is doing cloning.
In simple loop unswitch (as opposed to loop unswitch), not all blocks are cloned. This can create unreachable cloned blocks (no predecessor), which are later cleaned up.
In MemorySSA, the APIs for supporting these kind of updates (clone + update exit blocks), make certain assumption on the integrity of the CFG. When cloning, if something was not cloned, it's values in MemorySSA default to LiveOnEntry. When updating exit blocks, it is safe to assume that we can first insert phis in the blocks merging two clones, then add additional phis in the IDF of the blocks that received phis. This no longer holds true if one of the clones being merged comes from an unreachable block. We'd conservatively need to add all phis before filling in their incoming definitions. In practice this restriction can be relaxed if we clean up trivial phis after the first round of insertion.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63354
llvm-svn: 363880
Summary:
LoopRotate doesn't create a faithful clone of an instruction, it may
simplify it beforehand. Hence the clone of an instruction that has a
MemoryDef associated may not be a definition, but a use or not a memory
alternig instruction.
Don't rely on the template when the clone may be simplified.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63355
llvm-svn: 363597
Summary:
Add all MemoryPhis in IDF before filling in their incomign values.
Otherwise, a new Phi can be added that needs to become the incoming
value of another Phi.
Test fails the verification in verifyPrevDefInPhis.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63353
llvm-svn: 363590
Summary: After applying a set of insert updates, there may be trivial Phis left over. Clean them up.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63033
llvm-svn: 363094
LoopSimplify can preserve MemorySSA after r360270.
But the MemorySSA analysis is retrieved and preserved only when the
EnableMSSALoopDependency is set to true. Use the same conditional to
mark the pass as preserved, otherwise subsequent passes will get an
invalid analysis.
Resolves PR41853.
llvm-svn: 360697
Summary:
Originally the insertDef method was only used when building MemorySSA, and was limiting the number of Phi nodes that it created.
Now it's used for updates as well, and it can create additional Phis needed for correctness.
Make sure no Phis are created in unreachable blocks (condition met during MSSA build), otherwise the renamePass will find a null DTNode.
Resolves PR41640.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61410
llvm-svn: 359845
Summary:
MemorySSA keeps internal pointers of AA and DT.
If these get invalidated, so should MemorySSA.
Reviewers: george.burgess.iv, chandlerc
Subscribers: jlebar, Prazek, llvm-commits
Tags: LLVM
Differential Revision: https://reviews.llvm.org/D61043
llvm-svn: 359627
Summary:
MemorySSA keeps internal pointers of AA and DT.
If these get invalidated, so should MemorySSA.
Reviewers: george.burgess.iv, chandlerc
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61043
........
This was causing windows build bot failures
llvm-svn: 359555
Summary:
MemorySSA keeps internal pointers of AA and DT.
If these get invalidated, so should MemorySSA.
Reviewers: george.burgess.iv, chandlerc
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61043
llvm-svn: 359519
Summary:
When inserting a new Def, MemorySSA may be have non-minimal number of Phis.
While inserting, the walk to find the previous definition may cleanup minimal Phis.
When the last definition is trivial to obtain, we do not cache it.
It is possible while getting the previous definition for a Def to get two different answers:
- one that was straight-forward to find when walking the first path (a trivial phi in this case), and
- another that follows a cleanup of the trivial phi, it determines it may need additional Phi nodes, it inserts them and returns a new phi in the same position as the former trivial one.
While the Phis added for the second path are all redundant, they are not complete (the walk is only done upwards), and they are not properly cleaned up afterwards.
A way to fix this problem is to cache the straight-forward answer we got on the first walk.
The caching is only kept for the duration of a getPreviousDef call, and for Phis we use TrackingVH, so removing the trivial phi will lead to replacing it with the next dominating phi in the cache.
Resolves PR40749.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60634
llvm-svn: 358313
Summary:
After introducing the limit for clobber walking, `walkToPhiOrClobber` would assert that the limit is at least 1 on entry.
The test included triggered that assert.
The callsite in `tryOptimizePhi` making the calls to `walkToPhiOrClobber` is structured like this:
```
while (true) {
if (getBlockingAccess()) { // calls walkToPhiOrClobber
}
for (...) {
walkToPhiOrClobber();
}
}
```
The cleanest fix is to check if the limit was reached inside `walkToPhiOrClobber`, and give an allowence of 1.
This approach not make any alias() calls (no calls to instructionClobbersQuery), so the performance condition is enforced.
The limit is set back to 0 if not used, as this provides info on the fact that we stopped before reaching a true clobber.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60479
llvm-svn: 358303
Summary:
The original assumption for the insertDef method was that it would not
materialize Defs out of no-where, hence it will not insert phis needed
after inserting a Def.
However, when cloning an instruction (use case used in LICM), we do
materialize Defs "out of no-where". If the block receiving a Def has at
least one other Def, then no processing is needed. If the block just
received its first Def, we must check where Phi placement is needed.
The only new usage of insertDef is in LICM, hence the trigger for the bug.
But the original goal of the method also fails to apply for the move()
method. If we move a Def from the entry point of a diamond to either the
left or right blocks, then the merge block must add a phi.
While this usecase does not currently occur, or may be viewed as an
incorrect transformation, MSSA must behave corectly given the scenario.
Resolves PR40749 and PR40754.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58652
llvm-svn: 355040
The correct edge being deleted is not to the unswitched exit block, but to the
original block before it was split. That's the key in the map, not the
value.
The insert is correct. The new edge is to the .split block.
The splitting turns OriginalBB into:
OriginalBB -> OriginalBB.split.
Assuming the orignal CFG edge: ParentBB->OriginalBB, we must now delete
ParentBB->OriginalBB, not ParentBB->OriginalBB.split.
llvm-svn: 354656
Summary:
This verification may fail after certain transformations due to
BasicAA's fragility. Added a small explanation and a testcase that
triggers the assert in checkClobberSanity (before its removal).
Addresses PR40509.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, llvm-commits, Prazek
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57973
llvm-svn: 353739
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
In particular, when asked to print a MemoryAccess, we'll now print where
defs are optimized to, and we'll print optimized access types.
This patch also introduces an operator<< to make printing AliasResults
easier.
Patch by Juneyoung Lee!
Differential Revision: https://reviews.llvm.org/D47860
llvm-svn: 334760
Summary:
After r332167 we started to sort the IDF blocks inside IDF calculation, so
there is no need to re-sort them on the user site. The test changes are due to
a slightly different order we're using now (originally we used DFSInNumber and
now the blocks are sorted by a pair (LevelFromRoot, DFSInNumber)).
Reviewers: dberlin, mgrang
Subscribers: Prazek, hiraditya, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D46899
llvm-svn: 332385
It turned out that readonly argmemonly is not enough.
store 42, %p
%b = barrier(%p)
store 43, %b
the first store is dead, but because barrier was marked as
reading argument memory, it was considered alive. With
inaccessiblememonly it doesn't read the argument, but
it also can't be CSEd.
based on: https://reviews.llvm.org/D32006
llvm-svn: 331338
We use a `DenseMap<MemoryLocOrCall, MemlocStackInfo>` to keep track of
prior work when optimizing uses in MemorySSA. Because we weren't
accounting for callsite arguments in either the hash code or equality
tests for `MemoryLocOrCall`s, we optimized uses too aggressively in
some rare cases.
Fix by Daniel Berlin.
Should fix PR36883.
llvm-svn: 328748
Summary:
Make MemorySSA allow reordering of two loads that may alias, when one is volatile.
This makes MemorySSA less conservative and behaving the same as the AliasSetTracker.
For more context, see D16875.
LLVM language reference: "The optimizers must not change the number of volatile operations or change their order of execution relative to other volatile operations. The optimizers may change the order of volatile operations relative to non-volatile operations. This is not Java’s “volatile” and has no cross-thread synchronization behavior."
Reviewers: george.burgess.iv, dberlin
Subscribers: sanjoy, reames, hfinkel, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D41525
llvm-svn: 321382
llvm.invariant.group.barrier may accept pointers to arbitrary address space.
This patch let it accept pointers to i8 in any address space and returns
pointer to i8 in the same address space.
Differential Revision: https://reviews.llvm.org/D39973
llvm-svn: 318413
Summary:
Readnone attribute would cause CSE of two barriers with
the same argument, which is invalid by example:
struct Base {
virtual int foo() { return 42; }
};
struct Derived1 : Base {
int foo() override { return 50; }
};
struct Derived2 : Base {
int foo() override { return 100; }
};
void foo() {
Base *x = new Base{};
new (x) Derived1{};
int a = std::launder(x)->foo();
new (x) Derived2{};
int b = std::launder(x)->foo();
}
Here 2 calls of std::launder will produce @llvm.invariant.group.barrier,
which would be merged into one call, causing devirtualization
to devirtualize second call into Derived1::foo() instead of
Derived2::foo()
Reviewers: chandlerc, dberlin, hfinkel
Subscribers: llvm-commits, rsmith, amharc
Differential Revision: https://reviews.llvm.org/D31531
llvm-svn: 300101
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980