It is surprisingly difficult to write a simple python script that
can reliably `import lldb` without failing, or crashing. I'm
currently resorting to convolutions like this:
def find_lldb(may_reexec=False):
if prefix := os.environ.get('LLDB_PYTHON_PREFIX'):
if os.path.realpath(prefix) != os.path.realpath(sys.prefix):
raise Exception("cannot import lldb.\n"
f" sys.prefix should be: {prefix}\n"
f" but it is: {sys.prefix}")
else:
line1, line2 = subprocess.run(
['lldb', '-x', '-b', '-o', 'script print(sys.prefix)'],
encoding='utf8', stdout=subprocess.PIPE,
check=True).stdout.strip().splitlines()
assert line1.strip() == '(lldb) script print(sys.prefix)'
prefix = line2.strip()
os.environ['LLDB_PYTHON_PREFIX'] = prefix
if sys.prefix != prefix:
if not may_reexec:
raise Exception(
"cannot import lldb.\n" +
f" This python, at {sys.prefix}\n"
f" does not math LLDB's python at {prefix}")
os.environ['LLDB_PYTHON_PREFIX'] = prefix
python_exe = os.path.join(prefix, 'bin', 'python3')
os.execl(python_exe, python_exe, *sys.argv)
lldb_path = subprocess.run(['lldb', '-P'],
check=True, stdout=subprocess.PIPE,
encoding='utf8').stdout.strip()
sys.path = [lldb_path] + sys.path
This patch aims to replace all that with:
#!/usr/bin/env lldb-python
import lldb
...
... by adding the following features:
* new command line option: --print-script-interpreter-info. This
prints language-specific information about the script interpreter
in JSON format.
* new tool (unix only): lldb-python which finds python and exec's it.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D112973
This patch changes the `ScriptedThread` initializer in couple of ways:
- It replaces the `SBTarget` parameter by a `SBProcess` (pointing to the
`ScriptedProcess` that "owns" the `ScriptedThread`).
- It adds a reference to the `ScriptedProcessInfo` Dictionary, to pass
arbitrary user-input to the `ScriptedThread`.
This patch also fixes the SWIG bindings methods that call the
`ScriptedProcess` and `ScriptedThread` initializers by passing all the
arguments to the appropriate `PythonCallable` object.
Differential Revision: https://reviews.llvm.org/D112046
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Currently calling SBType::IsTypeComplete returns true for record types if and
only if the underlying record in our internal Clang AST has a definition.
The function however doesn't actually force the loading of any external
definition from debug info, so it currently can return false even if the type is
actually defined in a program's debug info but LLDB hasn't lazily created the
definition yet.
This patch changes the behaviour to always load the definition first so that
IsTypeComplete now consistently returns true if there is a definition in the
module/target.
The motivation for this patch is twofold:
* The API is now arguably more useful for the user which don't know or care
about the internal lazy loading mechanism of LLDB.
* With D101950 there is no longer a good way to ask a Decl for a definition
without automatically pulling in a definition from the ExternalASTSource. The
current behaviour doesn't seem useful enough to justify the necessary
workarounds to preserve it for a time after D101950.
Note that there was a test that used this API to test lazy loading of debug info
but that has been replaced with TestLazyLoading by now (which just dumps the
internal Clang AST state instead).
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D112615
Add necessary typemaps for Lua bindings, together with some other files.
Signed-off-by: Siger Yang <sigeryeung@gmail.com>
Reviewed By: tammela
Differential Revision: https://reviews.llvm.org/D108090
This patch adds support for memory regions in Scripted Processes.
This is necessary to read the stack memory region in order to
reconstruct each stackframe of the program.
In order to do so, this patch makes some changes to the SBAPI, namely:
- Add a new constructor for `SBMemoryRegionInfo` that takes arguments
such as the memory region name, address range, permissions ...
This is used when reading memory at some address to compute the offset
in the binary blob provided by the user.
- Add a `GetMemoryRegionContainingAddress` method to `SBMemoryRegionInfoList`
to simplify the access to a specific memory region.
With these changes, lldb is now able to unwind the stack and reconstruct
each frame. On top of that, reloading the target module at offset 0 allows
lldb to symbolicate the `ScriptedProcess` using debug info, similarly to an
ordinary Process.
To test this, I wrote a simple program with multiple function calls, ran it in
lldb, stopped at a leaf function and read the registers values and copied
the stack memory into a binary file. These are then used in the python script.
Differential Revision: https://reviews.llvm.org/D108953
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces the `ScriptedThread` class with its python
interface.
When used with `ScriptedProcess`, `ScriptedThreaad` can provide various
information such as the thread state, stop reason or even its register
context.
This can be used to reconstruct the program stack frames using lldb's unwinder.
rdar://74503836
Differential Revision: https://reviews.llvm.org/D107585
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch splits the previous `ScriptedProcessPythonInterface` into
multiple specific classes:
1. The `ScriptedInterface` abstract class that carries the interface
instance object and its virtual pure abstract creation method.
2. The `ScriptedPythonInterface` that holds a generic `Dispatch` method that
can be used by various interfaces to call python methods and also keeps a
reference to the Python Script Interpreter instance.
3. The `ScriptedProcessInterface` that describes the base Scripted
Process model with all the methods used in the underlying script.
All these components are used to refactor the `ScriptedProcessPythonInterface`
class, making it more modular.
This patch is also a requirement for the upcoming work on `ScriptedThread`.
Differential Revision: https://reviews.llvm.org/D107521
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This change adds AllocateMemory and DeallocateMemory methods to the SBProcess
API, so that clients can allocate and deallocate memory blocks within the
process being debugged (for storing JIT-compiled code or other uses).
(I am developing a debugger + REPL using the API; it will need to store
JIT-compiled code within the target.)
Reviewed By: clayborg, jingham
Differential Revision: https://reviews.llvm.org/D105389
Add a new feature to process save-core on Darwin systems -- for
lldb to create a user process corefile with only the dirty (modified
memory) pages included. All of the binaries that were used in the
corefile are assumed to still exist on the system for the duration
of the use of the corefile. A new --style option to process save-core
is added, so a full corefile can be requested if portability across
systems, or across time, is needed for this corefile.
debugserver can now identify the dirty pages in a memory region
when queried with qMemoryRegionInfo, and the size of vm pages is
given in qHostInfo.
Create a new "all image infos" LC_NOTE for Mach-O which allows us
to describe all of the binaries that were loaded in the process --
load address, UUID, file path, segment load addresses, and optionally
whether code from the binary was executing on any thread. The old
"read dyld_all_image_infos and then the in-memory Mach-O load
commands to get segment load addresses" no longer works when we
only have dirty memory.
rdar://69670807
Differential Revision: https://reviews.llvm.org/D88387
This adds a basic SB API for creating and stopping traces.
Note: This doesn't add any APIs for inspecting individual instructions. That'd be a more complicated change and it might be better to enhande the dump functionality to output the data in binary format. I'll leave that for a later diff.
This also enhances the existing tests so that they test the same flow using both the command interface and the SB API.
I also did some cleanup of legacy code.
Differential Revision: https://reviews.llvm.org/D103500
This documents the behaviour of the different SBType functions with notes for
the language-specific behaviour for C/C++/Objective-C. All of this reflects the
current behaviour of LLDB (even though that also means some functions behave
kinda weird but at least they are now documented to be weird)
Reviewed By: #lldb, mib
Differential Revision: https://reviews.llvm.org/D103454
This is another step towards implementing the equivalent of
`platform process list` and related functionality.
`uint32_t` is used for the argument count and index despite the
underlying value being `size_t` to be consistent with other
index-based access to arguments.
Differential Revision: https://reviews.llvm.org/D103675
This is present when doing a `platform process list` and is
tracked by the underlying code. To do something like the
process list via the SB API in the future, this must be
exposed.
Differential Revision: https://reviews.llvm.org/D103375
Introduce three new stop reasons for fork, vfork and vforkdone events.
This includes server support for serializing fork/vfork events into
gdb-remote protocol. The stop infos for the two base events take a pair
of PID and TID for the newly forked process.
Differential Revision: https://reviews.llvm.org/D100196
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In order to facilitate the writting of Scripted Processes, this patch
introduces a `ScriptedProcess` python base class in the lldb module.
The base class holds the python interface with all the - abstract -
methods that need to be implemented by the inherited class but also some
methods that can be overwritten.
This patch also provides an example of a Scripted Process with the
`MyScriptedProcess` class.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95712
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new command options to the CommandObjectProcessLaunch
for scripted processes.
Among the options, the user need to specify the class name managing the
scripted process. The user can also use a key-value dictionary holding
arbitrary data that will be passed to the managing class.
This patch also adds getters and setters to `SBLaunchInfo` for the
class name managing the scripted process and the dictionary.
rdar://65508855
Differential Review: https://reviews.llvm.org/D95710
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Ignore `-Wreturn-type-c-linkage` diagnostics for `LLDBSwigPythonBreakpointCallbackFunction`.
The function is defined in `python-wrapper.swig` which uses `extern "C" { ... }` blocks.
The declaration of this function in `ScriptInterpreterPython.cpp` already uses these
same pragmas to silence the warning there.
This prevents `-Werror` builds from failing.
Differential Revision: https://reviews.llvm.org/D98368
This patch exposes the getter and setter methods for the command
interpreter `print_errors` run option.
rdar://74816984
Differential Revision: https://reviews.llvm.org/D98001
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In order to facilitate the writting of Scripted Processes, this patch
introduces a `ScriptedProcess` python base class in the lldb module.
The base class holds the python interface with all the - abstract -
methods that need to be implemented by the inherited class but also some
methods that can be overwritten.
This patch also provides an example of a Scripted Process with the
`MyScriptedProcess` class.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95712
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a ScriptedProcess interface to the ScriptInterpreter and
more specifically, to the ScriptInterpreterPython.
This interface will be used in the C++ `ScriptProcess` Process Plugin to
call the script methods.
At the moment, not all methods are implemented, they will upstreamed in
upcoming patches.
This patch also adds helper methods to the ScriptInterpreter to
convert `SBAPI` Types (SBData & SBError) to `lldb_private` types
(DataExtractor & Status).
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95711
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new command options to the CommandObjectProcessLaunch
for scripted processes.
Among the options, the user need to specify the class name managing the
scripted process. The user can also use a key-value dictionary holding
arbitrary data that will be passed to the managing class.
This patch also adds getters and setters to `SBLaunchInfo` for the
class name managing the scripted process and the dictionary.
rdar://65508855
Differential Review: https://reviews.llvm.org/D95710
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The Python code generated by SWIG is compatible with both Python 2 and
Python 3. The -py3 option enables Python 2 incompatible features such as
function annotations and abstract base classes.
Differential revision: https://reviews.llvm.org/D96096
This patch adds an `SBTarget::IsLoaded(const SBModule&) const` endpoint
to lldb's Scripting Bridge API. As the name suggests, it will allow the
user to know if the module is loaded in a specific target.
rdar://37957625
Differential Review: https://reviews.llvm.org/D95686
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Adds support for running a Lua function when a breakpoint is hit.
Example:
breakpoint command add -s lua -F abc
The above runs the Lua function 'abc' passing 2 arguments. 'frame', 'bp_loc' and 'extra_args'.
A third parameter 'extra_args' is only present when there is structured data
declared in the command line.
Example:
breakpoint command add -s lua -F abc -k foo -v bar
Differential Revision: https://reviews.llvm.org/D93649
This patch adds the integer handling typemaps and the typemap for
string returning functions.
The integer handling typemaps overrides SWIG's own typemaps to distinct
the handling of integers from floating point.
The typemap for string returning functions is a port of Python's
typemap.
Differential Revision: https://reviews.llvm.org/D94937
Enums and constants are currently missing in the new LLDB Python API docs.
In theory we could just let them be autogenerated like the SB API classes, but sadly the generated documentation
suffers from a bunch of problems. Most of these problems come from the way SWIG is representing enums, which is
done by translating every single enum case into its own constant. This has a bunch of nasty effects:
* Because SWIG throws away the enum types, we can't actually reference the enum type itself in the API. Also because automodapi is impossible to script, this can't be fixed in post (at least without running like sed over the output files).
* The lack of enum types also causes that every enum *case* has its own full doc page. Having a full doc page that just shows a single enum case is pointless and it really slows down sphinx.
* There is no SWIG code for the enums, so there is also no place to write documentation strings for them. Also there is no support for copying the doxygen strings (which would be in the wrong format, but better than nothing) for enums (let alone our defines), so we can't really document all this code.
* Because the enum cases are just forwards to the native lldb module (which we mock), automodapi actually takes the `Mock` docstrings and adds it to every single enum case.
I don't see any way to solve this via automodapi or SWIG. The most reasonable way to solve this is IMHO to write a simple Clang tool
that just parses our enum/constant headers and emits an *.rst file that we check in. This way we can do all the LLDB-specific enum case and constant
grouping that we need to make a readable documentation page.
As we're without any real documentation until I get around to write that tool, I wrote a doc page for the enums/constants as a stop gap measure.
Most of this is done by just grepping our enum header and then manually cleaning up all the artifacts and copying the few doc strings we have.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D94959
Right now we're using the 'content' role as default which will just render
these things as cursive (which isn't really useful for code examples). It also
prevents us from assigning a more useful default role in the future.
Mostly just making sure the indentation is right (SBDebugger had 0 spaces
as it was still plain text, the others had too much indentation or other
minor issues).
The first line of the doc string ends up on the SB API class summary at
the root page of the Python API web page of LLDB. Currently many of the
descriptions are missing or are several lines which makes the table really
hard to read.
This just adds the missing docstrings where possible and fixes the formatting
where necessary.
This translates most of the old ASCII art in our documentation to the
equivalent in restructured text (which the new version of the LLDB docs
is using).
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch exposes the Target::CreateBreakpoint overload with the
boolean argument to move to the neareast code to the SBAPI.
This is useful when creating column breakpoints to restrict lldb's
resolution to the pointed source location, preventing it to go to the next
line.
rdar://72196842
Differential Revision: https://reviews.llvm.org/D93266
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
These callbacks are set using the following:
breakpoint command add -s lua -o "print('hello world!')"
The user supplied script is executed as:
function (frame, bp_loc, ...)
<body>
end
So the local variables 'frame', 'bp_loc' and vararg are all accessible.
Any global variables declared will persist in the Lua interpreter.
A user should never hold 'frame' and 'bp_loc' in a global variable as
these userdatas are context dependent.
Differential Revision: https://reviews.llvm.org/D91508
This reverts commit f775fe5964.
I fixed a return type error in the original patch that was causing a test failure.
Also added a REQUIRES: python to the shell test so we'll skip this for
people who build lldb w/o Python.
Also added another test for the error printing.
Usually when we enter a SWIG wrapper function from Python, SWIG automatically
adds a `Py_BEGIN_ALLOW_THREADS`/`Py_END_ALLOW_THREADS` around the call to the SB
API C++ function. This will ensure that Python's GIL is released when we enter
LLDB and locked again when we return to the wrapper code.
D51569 changed this behaviour but only for the generated `__str__` wrappers. The
added `nothreadallow` disables the injection of the GIL release/re-acquire code
and the GIL is now kept locked when entering LLDB and is expected to be still
locked when returning from the LLDB implementation. The main reason for that was
that back when D51569 landed the wrapper itself created a Python string. These
days it just creates a std::string and SWIG itself takes care of getting the GIL
and creating the Python string from the std::string, so that workaround isn't
necessary anymore.
This patch just removes `nothreadallow` so that our `__str__` functions now
behave like all other wrapper functions in that they release the GIL when
calling into the SB API implementation.
The motivation here is actually to work around another potential bug in LLDB.
When one calls into the LLDB SB API while holding the GIL and that call causes
LLDB to interpret some Python script via `ScriptInterpreterPython`, then the GIL
will be unlocked when the control flow returns from the SB API. In the case of
the `__str__` wrapper this would cause that the next call to a Python function
requiring the GIL would fail (as SWIG will not try to reacquire the GIL as it
isn't aware that LLDB removed it).
The reason for this unexpected GIL release seems to be a workaround for recent
Python versions:
```
// The only case we should go further and acquire the GIL: it is unlocked.
if (PyGILState_Check())
return;
```
The early-exit here causes `InitializePythonRAII::m_was_already_initialized` to
be always false and that causes that `InitializePythonRAII`'s destructor always
directly unlocks the GIL via `PyEval_SaveThread`. I'm investigating how to
properly fix this bug in a follow up patch, but for now this straightforward
patch seems to be enough to unblock my other patches (and it also has the
benefit of removing this workaround).
The test for this is just a simple test for `std::deque` which has a synthetic
child provider implemented as a Python script. Inspecting the deque object will
cause `expect_expr` to create a string error message by calling
`str(deque_object)`. Printing the ValueObject causes the Python script for the
synthetic children to execute which then triggers the bug described above where
the GIL ends up being unlocked.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D88302
Previously, there was a little ambiguity about whether IsInlined should
return true for an inlined lexical block, since technically the lexical
block would not represent an inlined function (it'd just be contained
within one).
Edit suggested by Jim Ingham.
This patch adds a way to fetch breakpoint metadatas as a serialized
`Structured` Data format (JSON). This can be used by IDEs to update
their UI when a breakpoint is set or modified from the console.
rdar://11013798
Differential Revision: https://reviews.llvm.org/D87491
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds the ability to use a custom interpreter with the
`platform shell` command. If the user set the `-s|--shell` option
with the path to a binary, lldb passes it down to the platform's
`RunShellProcess` method and set it as the shell to use in
`ProcessLaunchInfo to run commands.
Note that not all the Platforms support running shell commands with
custom interpreters (i.e. RemoteGDBServer is only expected to use the
default shell).
This patch also makes some refactoring and cleanups, like swapping
CString for StringRef when possible and updating `SBPlatformShellCommand`
with new methods and a new constructor.
rdar://67759256
Differential Revision: https://reviews.llvm.org/D86667
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`struct Py_buffer_RAII` definition uses explicit deleted functions which are not supported by SWIG 2 (only 3).
To get around this I moved this struct to an .h file that is included to avoid being parsed by swig.
Reviewed By: lawrence_danna
Differential Revision: https://reviews.llvm.org/D86381
LLVM install component targets needs to be in the form of: install-{target}[-stripped]
I tested with:
```
cmake ... -DLLVM_ENABLE_PROJECTS="clang;lldb" -DLLVM_DISTRIBUTION_COMPONENTS="lldb;liblldb;lldb-python-scripts;" ...
DESTDIR=... ninja install-distribution
```
@JDevlieghere `finish_swig_python_scripts` is a really weird name for a distribution component, any reason that it has to be this way?
Differential Revision: https://reviews.llvm.org/D86235
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
Right now the only places in the SB API where lldb:: ModuleSP instances are
destroyed are in SBDebugger::MemoryPressureDetected (where it's just attempted
but not guaranteed) and in SBDebugger::DeleteTarget (which will be removed in
D83933). Tests that directly create an lldb::ModuleSP and never create a target
therefore currently leak lldb::Module instances. This triggers the sanity checks
in lldbtest that make sure that the global module list is empty after a test.
This patch adds SBModule::GarbageCollectAllocatedModules as an explicit way to
clean orphaned lldb::ModuleSP instances. Also we now start calling this method
at the end of each test run and move the sanity check behind that call to make
this work. This way even tests that don't create targets can pass the sanity
check.
This fixes TestUnicodeSymbols.py when D83865 is applied (which makes that the
sanity checks actually fail the test).
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83876
After moving python.swig and lua.swig into their respective
subdirectories, the relative paths in these files were out of date. This
fixes that and ensures the appropriate include paths are set in the SWIG
invocation.
Differential revision: https://reviews.llvm.org/D85859
Separate the CMake logic for Lua and Python to clearly distinguish
between code specific to either scripting language and the code shared
by both.
What this patch does is:
- Move Python specific code into the bindings/python subdirectory.
- Move the Lua specific code into the bindings/lua subdirectory.
- Add the _python suffix to Python specific functions/targets.
- Fix a dependency issue that would check the binding instead of
whether the scripting language is enabled.
Note that this patch also changes where the bindings are generated,
which might affect downstream projects that check them in.
Differential revision: https://reviews.llvm.org/D85708
Move the finish_swig logic into a function in the bindings directory. By
making this a function I can reuse the logic internally where we ship
two Python versions and therefore need to finish the bindings twice.
This patch improves the error reporting for SBBreakpoint::AddName by
adding a new method `SBBreakpoint::AddNameWithErrorHandling` that returns
a SBError instead of a boolean.
This way, if the breakpoint naming failed in the backend, the client
(i.e. Xcode), will be able to report the reason of that failure to the
user.
rdar://64765461
Differential Revision: https://reviews.llvm.org/D82879
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch improves the error reporting for SBBreakpoint::AddName by
adding a new method `SBBreakpoint::AddNameWithErrorHandling` that returns
a SBError instead of a boolean.
This way, if the breakpoint naming failed in the backend, the client
(i.e. Xcode), will be able to report the reason of that failure to the
user.
rdar://64765461
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The reproducer intentionally leak every object allocated during replay,
which means that modules never get orphaned. If this were to happen for
another reason, we might not be testing what we think we are. Assert
that there are no targets left at the end of a test and that the global
module cache is empty in the non-reproducer scenario.
Differential revision: https://reviews.llvm.org/D81612
Several SBAddress properties use the lldb.target or lldb.process
convenience variables which are only set under the interactive script
interpreter. Unfortunately, users have been using these properties in
Python script and commands. This patch raises a Python exception to
force users to use GetLoadAddress instead.
Differential revision: https://reviews.llvm.org/D80848
This makes it possible to instrument the call for the reproducers. This
fixes TestStructuredDataAPI.py with reproducer replay.
Differential revision: https://reviews.llvm.org/D80312
The reproducers' working directory is set to the current working
directory when they are initialized. While this is not optimal, as the
cwd can change during a debug session, it has been sufficient so far.
The current approach doesn't work for the API test suite however because
dotest temporarily changes the directory to where the test's Python file
lives.
This patch adds an API to tell the reproducers what to set the CWD to.
This is a NO-OP in every mode but capture.
Differential revision: https://reviews.llvm.org/D79825
This was reverted due to a python2-specific bug. Re-landing with a fix
for python2.
Summary:
One small step in my long running quest to improve python exception handling in
LLDB. Replace GetInteger() which just returns an int with As<long long> and
friends, which return Expected types that can track python exceptions
Reviewers: labath, jasonmolenda, JDevlieghere, vadimcn, omjavaid
Reviewed By: labath, omjavaid
Subscribers: omjavaid, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D78462
Currently, `SBCommandInterpreterRunOptions` is defined in
`SBCommandInterpreter.h`. Given that the options are always passed by
reference, a forward declaration is sufficient.
That's not the case for `SBCommandInterpreterRunResults`, which we need
for a new overload for `RunCommandInterpreter` and that returns this new
class by value. We can't include `SBCommandInterpreter.h` because
`SBCommandInterpreter::GetDebugger()` returns SBDebugger by value and
therefore needs a full definition.
This patch moves the definition of `SBCommandInterpreterRunOptions` into
a new header. In a later patch, `SBCommandInterpreterRunResults` will
be defined in there as well, solving the aforementioned problem.
Differential revision: https://reviews.llvm.org/D79115
Summary:
One small step in my long running quest to improve python exception handling in
LLDB. Replace GetInteger() which just returns an int with As<long long> and
friends, which return Expected types that can track python exceptions
Reviewers: labath, jasonmolenda, JDevlieghere, vadimcn
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D78462
Make it possible to capture reproducers from the API test suite. Given
the symmetry between capture and replay, this patch also adds the
necessary code for replay. For now this is a NO-OP until the
corresponding reproducer instrumentation changes land.
For more info please refer to the RFC on lldb-dev:
http://lists.llvm.org/pipermail/lldb-dev/2020-April/016100.html
Differential revision: https://reviews.llvm.org/D77588
Using the approach suggested by Pavel in D77588, this patch introduces a
new lldbconfig module that lives next to the lldb module. It makes it
possible to make the lldb module configurable before importing it. More
specifically it makes it possible to delay initializing the debugger,
which is needed for testing the reproducer.
Differential revision: https://reviews.llvm.org/D77661
Summary:
The buffer protocol does not allow us to just call PyBuffer_Release
and assume the buffer will still be there. Most things that implement the
buffer protocol will let us get away with that, but not all. We need
to release it at the end of the SWIG wrapper.
Reviewers: labath, jasonmolenda, JDevlieghere, vadimcn
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D77480
Summary:
Usually when Clang emits an error Fix-It it does two things. It emits the diagnostic and then it fixes the
currently generated AST to reflect the applied Fix-It. While emitting the diagnostic is easy to implement,
fixing the currently generated AST is often tricky. That causes that some Fix-Its just keep the AST as-is or
abort the parsing process entirely. Once the parser stopped, any Fix-Its for the rest of the expression are
not detected and when the user manually applies the Fix-It, the next expression will just produce a new
Fix-It.
This is often occurring with quickly made Fix-Its that are just used to bridge temporary API changes
and that often are not worth implementing a proper API fixup in addition to the diagnostic. To still
give some kind of reasonable user-experience for users that have these Fix-Its and rely on them to
fix their expressions, this patch adds the ability to retry parsing with applied Fix-Its multiple time to
give the normal Fix-It experience where things Clang knows how to fix are not causing actual expression
error (at least when automatically applying Fix-Its is activated).
The way this is implemented is just by having another setting in the expression options that specify how
often we should try applying Fix-Its and then reparse the expression. The default setting is still 1 for everyone
so this should not affect the speed in which we fail to parse expressions.
Reviewers: jingham, JDevlieghere, friss, shafik
Reviewed By: shafik
Subscribers: shafik, abidh
Differential Revision: https://reviews.llvm.org/D77214
Summary: Inspired by https://reviews.llvm.org/D74636, I'm introducing a basic version of Environment in the API. More functionalities can be added as needed.
Reviewers: labath, clayborg
Subscribers: mgorny, lldb-commits, diazhector98
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76111
Summary: Inspired by https://reviews.llvm.org/D74636, I'm introducing a basic version of Environment in the API. More functionalities can be added as needed.
Reviewers: labath, clayborg
Subscribers: mgorny, lldb-commits, diazhector98
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76111
Make sure that `process` is not None before calling is_alive. Otherwise
this might result in an AttributeError: 'NoneType' object has no
attribute 'is_alive'.
Although lldb.process and friends could already be None in the past, for
example after leaving an interactive scripting session, the issue became
more prevalent after `fc1fd6bf9fcfac412b10b4193805ec5de0e8df57`.
I audited the other interface files for usages of target, process,
thread and frame, but this seems the only place where a global is used
from an SB class.
Some tests set settings and don't clean them up, this leads to side effects in other tests.
The patch removes a global debugger instance with a per-test debugger to avoid such effects.
From what I see, lldb.DBG was needed to determine the platform before a test is run,
lldb.selected_platform is used for this purpose now. Though, this required adding a new function
to the SBPlatform interface.
Differential Revision: https://reviews.llvm.org/D74903
This patch moves the SB API method GetExtendedCrashInformation from
SBTarget to SBProcess since it only makes sense to call this method on a
sane process which might not be the case on a SBTarget object.
It also addresses some feedbacks received after landing the first patch
for the 'crash-info' feature.
Differential Revision: https://reviews.llvm.org/D75049
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>