Make it possible to run the script command with a different language
than currently selected.
$ ./bin/lldb -l python
(lldb) script -l lua
>>> io.stdout:write("Hello, World!\n")
Hello, World!
When passing the language option and a raw command, you need to separate
the flag from the script code with --.
$ ./bin/lldb -l python
(lldb) script -l lua -- io.stdout:write("Hello, World!\n")
Hello, World!
Differential revision: https://reviews.llvm.org/D86996
`image dump symtab` seems to output the symbols in whatever order they appear in
the DenseMap that is used to filter out symbols with non-unique addresses. As
DenseMap is a hash map this order can change at any time so the output of this
command is pretty unstable. This also causes the `Breakpad/symtab.test` to fail
with enabled reverse iteration (which reverses the DenseMap order to find issues
like this).
This patch makes the DenseMap a std::vector and uses a separate DenseSet to do
the address filtering. The output order is now dependent on the order in which
the symbols are read (which should be deterministic). It might also avoid a bit
of work as all the work for creating the Symbol constructor parameters is only
done when we can actually emplace a new Symbol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87036
The test only checks the exit code that the debug server sends back, but
not the following explanation which is different for debugserver and lldb-server.
If our process terminates due to an unhandled signal, we are supposed to get the
signal code via WTERMSIG. However, we instead try to get the exit status via
WEXITSTATUS which just ends up always calculating signal code 0 (at least on the
macOS implementation where it just shifts the signal code bits away and we're
left with only 0 bits).
The exit status calculation on the LLDB side also seems a bit off as it claims
an exit status that is just the signal code (instead of for example 128 + signal
code), but that will be another patch.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D86336
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
The function was returning an incorrect (empty) value on the first
invocation. Given that this only affected the first invocation, this
bug/typo went mostly unaffected. DW_AT_const_value were particularly
badly affected by this as the GetByteSize call is
SymbolFileDWARF::ParseVariableDIE is likely to be the first call of this
function, and its effects cannot be undone by retrying.
Depends on D86348.
Differential Revision: https://reviews.llvm.org/D86436
Class-level static constexpr variables can have both DW_AT_const_value
(in the "declaration") and a DW_AT_location (in the "definition")
attributes. Our code was trying to handle this, but it was brittle and
hard to follow (and broken) because it was processing the attributes in
the order in which they were found.
Refactor the code to make the intent clearer -- DW_AT_location trumps
DW_AT_const_value, and fix the bug which meant that we were not
displaying these variables properly (the culprit was the delayed parsing
of the const_value attribute due to a need to fetch the variable type.
Differential Revision: https://reviews.llvm.org/D86615
This fixes several issues in handling of DW_AT_const_value attributes:
- the first is that the size of the data given by data forms does not
need to match the size of the underlying variable. We already had the
case to handle this for DW_FORM_(us)data -- this extends the handling
to other data forms. The main reason this was not picked up is because
clang uses leb forms in these cases while gcc prefers the fixed-size
ones.
- The handling of DW_AT_strp form was completely broken -- we would end
up using the pointer value as the result. I've reorganized this code
so that it handles all string forms uniformly.
- In case of a completely bogus form we would crash due to
strlen(nullptr).
Depends on D86311.
Differential Revision: https://reviews.llvm.org/D86348
Update the "image show-unwind" command output to show if the function
being shown is listed as a user-setting or platform trap handler.
Update the individual UnwindPlan dumps to show whether the unwind plan
is registered as a trap handler.
In some cases when we have a DW_AT_const_value and the data can be found in the
DWARFExpression then ValueObjectVariable does not handle it properly and we end
up with an extracting data from value failed error.
The test is a very stripped down assembly file since reproducing this relies on the results of compiling with -O1 which may not be stable over time.
Differential Revision: https://reviews.llvm.org/D86311
When replaying a reproducer captured from a core file, we always use
dsymForUUID for the kernel binary. When enabled, we also use it to find
kexts. Since these files are already contained in the reproducer,
there's no reason to call out to an external tool. If the tool returns a
different result, e.g. because the dSYM got garbage collected, it will
break reproducer replay. The SymbolFileProvider solves the issue by
mapping UUIDs to module and symbol paths in the reproducer.
Differential revision: https://reviews.llvm.org/D86389
Refuse to run the shell tests when %lldb cannot be substituted. This
prevents the test from silently running again the `lldb` in your PATH.
I noticed because when this happens, %lldb-init gets substituted with
lldb-init, which does not exists.
When replaying the reproducer, lldb should source the .lldbinit file
that was captured by the reproducer and not the one in the current home
directory. This requires that we store the home directory as part of the
reproducer. By returning the virtual home directory during replay, we
ensure the correct virtual path gets constructed which the VFS can then
find and remap to the correct file in the reproducer root.
This patch adds a new HomeDirectoryProvider, similar to the existing
WorkingDirectoryProvider. As the home directory is not part of the VFS,
it is stored in LLDB's FileSystem instance.
This is very similar to D85968, only more elusive to since we were not
adding the typedef type to the relevant DeclContext until D86140, which
meant that the DeclContext was populated (and the relevant assertion
hit) only after importing the type into the expression ast in a
particular way.
I haven't checked whether this situation can be hit in the gmodules
case, but my money is on "yes".
Differential Revision: https://reviews.llvm.org/D86216
Parsing DWARFv5 debug_loclist offsets when a CU is parsed is weighing
down memory usage of symbolizers that don't need to parse this data at
all. There's not much benefit to caching these anyway - since they are
O(1) lookup and reading once you know where the offset list starts (and
can do bounds checking with the offset list size too).
In general, I think it might be time to start paying down some of the
technical debt of loc/loclist/range/rnglist parsing to try to unify it a
bit more.
eg:
* Currently DWARFUnit has: RangeSection, RangeSectionBase, LocSection,
LocSectionBase, LocTable, RngListTable, LoclistTableHeader (be nice if
these were all wrapped up in two variables - one for loclists, one for
rnglists)
* rnglists and loclists are handled differently (see:
LoclistTableHeader, but no RnglistTableHeader)
* maybe all these types could be less stateful - lazily parse what they
need to, even reparsing rather than caching because it doesn't seem
too expensive, for instance. (though admittedly so long as it's
constantcost/overead per compilatiton that's probably adequate)
* Maybe implementing and using a DWARFDataExtractor that can be
sub-ranged (so we could slice it up to just the single contribution) -
though maybe that's not so useful because loc/ranges need to refer to
it by absolute, not contribution-relative mechanisms
Differential Revision: https://reviews.llvm.org/D86110
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
With -flimit-debug-info, we can run into cases when we only have a class
as a declaration, but we do have a definition of a nested class. In this
case, clang will hit an assertion when adding a member to an incomplete
type (but only if it's adding a c++ class, and not C struct).
It turns out we already had code to handle a similar situation arising
in the -gmodules scenario. This extends the code to handle
-flimit-debug-info as well, and reorganizes bits of other code handling
completion of types to move functions doing similar things closer
together.
Differential Revision: https://reviews.llvm.org/D85968
When bit-field data was stored in a Scalar in ValueObjectChild during UpdateValue()
it was extracting the bit-field value. Later on in lldb_private::DumpDataExtractor(…)
we were again attempting to extract the bit-field. Which would then not obtain the
correct value. This will remove the extra extraction in UpdateValue().
We hit this specific case when values are passed in registers, which we could only
reproduce in an optimized build.
Differential Revision: https://reviews.llvm.org/D85376
When loading a PE/COFF target, the associated PDB file often wasn't
found. The executable module contains a path for the associated PDB
file, but people often debug from a different directory than the one
their build system uses. (This is especially common in post-mortem
and cross platform debugging.)
Suppose the COFF executable being debugged is `~/proj/foo.exe`, but
it was built elsewhere and refers to `D:\remote\build\env\foobar.pdb`,
LLDB wouldn't find it.
With this change, if no file exists at the PDB path, LLDB will look
in the executable directory for a PDB file that matches the name of
the one it expected (e.g., `~/proj/foobar.pdb`). If found, the PDB
is subject to the same matching criteria (GUIDs and age) as would
have been used had it been in the original location.
This same-directory-as-the-binary rule is commonly used by debuggers
on Windows.
Differential Review: https://reviews.llvm.org/D84815
GNU ld allows sections after a non-SHF_ALLOC section to be covered by PT_LOAD
(PR37607) and assigns addresses to non-SHF_ALLOC output sections (similar to
SHF_ALLOC NOBITS sections. The location counter is not advanced).
This patch tries to fix PR37607 (remove a special case in
`Writer<ELFT>::createPhdrs`). To make the created PT_LOAD meaningful, we cannot
reset dot to 0 for a middle non-SHF_ALLOC output section. This results in
removal of two special cases in LinkerScript::assignOffsets. Non-SHF_ALLOC
non-orphan sections can have non-zero addresses like in GNU ld.
The zero address rule for non-SHF_ALLOC sections is weakened to apply to orphan
only. This results in a special case in createSection and findOrphanPos, respectively.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D85100
Add an option that allows the user to decide to not make the inferior is
responsible for its own TCC permissions. If you don't make the inferior
responsible, it inherits the permissions of its parent. The motivation
is the scenario of running the LLDB test suite from an external hard
drive. If the inferior is responsible, every test needs to be granted
access to the external volume. When the permissions are inherited,
approval needs to be granted only once.
Differential revision: https://reviews.llvm.org/D85237
I have made the DW_FORM_ref4 relative. One could also use relocated
DW_FORM_ref_addr instead.
Tested with:
echo 'void f(){}'|clang -o 1.o -c -Wall -g -x c -;./bin/clang -o 1 1.o ../llvm-monorepo/lldb/test/Shell/SymbolFile/DWARF/DW_TAG_GNU_call_site-DW_AT_low_pc.s;./bin/lldb --no-lldbinit ./1 -o r -o 'p p' -o exit
Summary:
This effectively reverts r188124, which added code to handle
(DW_AT_)declarations of structures with some kinds of children as
definitions. The commit message claims this is a workaround for some
kind of debug info produced by gcc. However, it does not go into
specifics, so it's hard to reproduce or verify that this is indeed still a
problem.
Having this code is definitely a problem though, because it mistakenly
declares incomplete dwarf declarations to be complete. Both clang (with
-flimit-debug-info) and gcc (by default) generate DW_AT_declarations of
structs with children. This happens when full debug info for a class is
not emitted in a given compile unit (e.g. because of vtable homing), but
the class has inline methods which are used in the given compile unit.
In that case, the compilers emit a DW_AT_declaration of a class, but
add a DW_TAG_subprogram child to it to describe the inlined instance of
the method.
Even though the class tag has some children, it definitely does not
contain enough information to construct a full class definition (most
notably, it lacks any members). Keeping the class as incomplete allows
us to search for a real definition in other modules, helping the
-flimit-debug-info flow. And in case the definition is not found we can
display a error message saying that, instead of just showing an empty
struct.
Reviewers: clayborg, aprantl, JDevlieghere, shafik
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D83302
RecordInterestingDirectory was added to collect dSYM bundles and their
content. For the current working directory we only want the directory to
be part of the VFS, not necessarily its contents. This patch renames the
current method to RecordInterestingDirectoryRecursively and adds a new
one that's not recursive.
Summary:
With D81784, lld has started debug info resolving relocations to
garbage-collected symbols as -1 (instead of relocation addend). For an
unaware consumer this generated sequences which seemingly wrap the
address space -- their first entry was 0xfffff, but all other entries
were low numbers.
Lldb stores line sequences concatenated into one large vector, sorted by
the first entry, and searched with std::lower_bound. This resulted in
the low-value entries being placed at the end of the vector, which
utterly confused the lower_bound algorithm, and caused it to not find a
match. (Previously, these sequences would be at the start of the vector,
and normally would contain addresses that are far smaller than any real
address we want to look up, so std::lower_bound was fine.)
This patch makes lldb ignore these kinds of sequences completely. It
does that by changing the construction algorithm from iterating over the
rows (as parsed by llvm), to iterating over the sequences. This is
important because the llvm parsed performs validity checks when
constructing the sequence array, whereas the row array contains raw
data.
Reviewers: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D83957
Summary:
Currently expect_expr will not run the expression if no target is selected. This
patch changes this behavior so that expect_expr will instead fall back to the
dummy target similar to what the `expression` command is doing. This way we
don't have to compile an empty executable to be able to use `expect_expr` (which
is a waste of resources for tests that just test generic type system features).
As a test I modernized the TestTypeOfDeclTypeExpr into a Python test +
expect_expr (as it relied on the dummy target fallback of the expression
command).
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: abidh
Differential Revision: https://reviews.llvm.org/D83388
Summary:
-debug-info-kind=constructor reduces the amount of class debug info that
is emitted; this patch switches to using this as the default.
Constructor homing emits the complete type info for a class only when the
constructor is emitted, so it is expected that there will be some classes that
are not defined in the debug info anymore because they are never constructed,
and we shouldn't need debug info for these classes.
I compared the PDB files for clang, and there are 273 class types that are defined with `=limited`
but not with `=constructor` (out of ~60,000 total class types).
We've looked at a number of the types that are no longer defined with =constructor. The vast
majority of cases are something like class A is used as a parameter in a member function of
some other class B, which is emitted. But the function that uses class A is never called, and class A
is never constructed, and therefore isn't emitted in the debug info.
Bug: https://bugs.llvm.org/show_bug.cgi?id=46537
Subscribers: aprantl, cfe-commits, lldb-commits
Tags: #clang, #lldb
Differential Revision: https://reviews.llvm.org/D79147
There are bugs where you don't want the signal handler to trigger, most
notably when that will cause another crash. Examples of this are lldb
running out of memory or a bug in the reproducer generation code. This
adds an escape hatch trough a (developer oriented) flag to not install
the signal handler.
rdar://problem/65149595
Differential revision: https://reviews.llvm.org/D83496
This is a preparatory rename of the developer facing reproducer flags.
reproducer-skip-version-check -> reproducer-no-version-check
reproducer-auto-generate -> reproducer-generate-on-quit
With -flimit-debug-info, we can have a definition of a class, but no
definition for some of its members. This extends the same logic we were
using for incomplete base classes to cover incomplete members too.
Test forward-declarations.s is removed as it is no longer applicable --
we don't warn anymore when encountering incomplete members as they could
be completed elsewhere. New checks added to TestLimitDebugInfo cover the
handling of incomplete members more thoroughly.
This complements the existing TestLimitDebugInfo.py, which tests this
scenario more comprehensively, but is not able to run on all hosts.
Specifically, it's hard to trigger this code from windows because clang
tries hard to ensure that debug info for types marked with
__declspec(dllexport) is emitted even under -flimit-debug-info (and
dllexport is needed to use a type across shared libraries).
This assembly-based test serves two purposes:
- it tests that -flimit-debug-info code path works for windows binaries
(even though the aforementioned feature means its less likely to be
used there)
- it gives basic test coverage for the -flimit-debug-info handling code
when running the test suite on windows hosts.
On macOS 11, system libraries which are part of the shared cache
are not present on the filesystem anymore. This causes issues
with build.py, because it fails to link binaries with libSystem
or libc++.
The real issue is that build.py was not passing an SDK to the
compiler. The script accepts an argument for the SDK, but it
is currently unused. This patch just threads the SDK through
to the compile and link steps and this fixes a bunch of Shell
test failures on very recent macOS builds.
The `frame recognizer` command only exists when Python scripting is
enabled. Therefore the test should be made conditional on Python.
Without it, the test fails with "'frame recognizer' is not a known
command."