CXXRecordDecl in a way that actually makes some sense:
- LambdaExpr contains all of the information for initializing the
lambda object, including the capture initializers and associated
array index variables.
- CXXRecordDecl's LambdaDefinitionData contains the captures, which
are needed to understand the captured variable references in the
body of the lambda.
llvm-svn: 150401
LambdaExpr over to the CXXRecordDecl. This allows us to eliminate the
back-link from the closure type to the LambdaExpr, which will simplify
and lazify AST deserialization.
llvm-svn: 150393
Fix build breakage from r150378: MSVC only allows taking the
address of a member function using the &ClassName::Function
syntax.# It was giving
llvm-svn: 150387
1358, 1360, 1452 and 1453.
- Instantiations of constexpr functions are always constexpr. This removes the
need for separate declaration/definition checking, which is now gone.
- This makes it possible for a constexpr function to be virtual, if they are
only dependently virtual. Virtual calls to such functions are not constant
expressions.
- Likewise, it's now possible for a literal type to have virtual base classes.
A constexpr constructor for such a type cannot actually produce a constant
expression, though, so add a special-case diagnostic for a constructor call
to such a type rather than trying to evaluate it.
- Classes with trivial default constructors (for which value initialization can
produce a fully-initialized value) are considered literal types.
- Classes with volatile members are not literal types.
- constexpr constructors can be members of non-literal types. We do not yet use
static initialization for global objects constructed in this way.
llvm-svn: 150359
id-expression 'x' will compute the type based on the assumption that
'x' will be captured, even if it isn't captured, per C++11
[expr.prim.lambda]p18. There are two related refactors that go into
implementing this:
1) Split out the check that determines whether we should capture a
particular variable reference, along with the computation of the
type of the field, from the actual act of capturing the
variable.
2) Always compute the result of decltype() within Sema, rather than
AST, because the decltype() computation is now context-sensitive.
llvm-svn: 150347
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
When creating the MCSubtargetInfo, the assembler driver uses the CPU and
feature string to construct a more accurate model of what instructions
are and are not legal.
rdar://10840476
llvm-svn: 150273
default is '=', and reword the warning about explicitly capturing
'this' in such lambdas to indicate that only explicit capture is
banned.
Introduce Fix-Its for this and other "save the programmer from
themself" rules regarding what can be explicitly captured and what
must be implicitly captured.
llvm-svn: 150256
o Correct the handling of the restrictions on usage of cv-qualified and
ref-qualified function types.
o Fix a bug where such types were rejected in template type parameter default
arguments, due to such arguments not being treated as a template type arg
context.
o Remove the ExtWarn for usage of such types as template arguments; that was
a standard defect, not a GCC extension.
o Improve the wording and unify the code for diagnosing cv-qualifiers with the
code for diagnosing ref-qualifiers.
llvm-svn: 150244
to pretty-print such function types better, and to fix a case where we were not
instantiating templates in lexical order. In passing, move the Variadic bit from
Type's bitfields to FunctionProtoType to get the Type bitfields down to 32 bits.
Also ensure that we always substitute the return type of a function when
substituting explicitly-specified arguments, since that can cause us to bail
out with a SFINAE error before we hit a hard error in parameter substitution.
llvm-svn: 150241
incomplete class type which has an overloaded operator&, it's now just
unspecified whether the overloaded operator or the builtin is used.
llvm-svn: 150234
This is a relatively noisy warning for a codebase not explicitly designed for
it (effectively enforcing a stylistic constraint about the use of defaults
in switches over enums) & there's nothing Clang does to clean up the noise
when compared to GCC's implementation so the same decision seems suitable.
llvm-svn: 150230
has been declared in its primary class, superclass,
or in one of their protocols, no need to issue unimplemented method.
// rdar://10823023
llvm-svn: 150206
[expr.prim.lambda]p4, including the current suggested resolution of
core isue 975, which allows multiple return statements so long as the
types match. ExtWarn when user code is actually making use of this
extension.
llvm-svn: 150168
We were passing a decl to the consumer after all pending deserializations were finished
but this was not enough; due to processing by the consumer we may end up into yet another
deserialization process but the way FinishedDeserializing() was setup we would not ensure
that everything was fully deserialized before returning to the consumer.
Separate ASTReader::FinishedDeserializing() into two semantic actions.
The first is ensuring that a deserialization process ends up will fully deserialized decls/types even
if the process is started by the consumer.
The second is pushing "interesting" decls to the consumer; we make sure that we don't re-enter this
section recursively be checking a variable.
llvm-svn: 150160
- Complete the lambda class when we finish the lambda expression
(previously, it was left in the "being completed" state)
- Actually return the LambdaExpr object and bind to the resulting
temporary when needed.
- Detect when cleanups are needed while capturing a variable into a
lambda (e.g., due to default arguments in the copy constructor), and
make sure those cleanups apply for the whole of the lambda
expression.
llvm-svn: 150123
the sign bit doesn't have undefined behavior, but a signed left shift of a 1 bit
out of the sign bit still does. As promised to Howard :)
The suppression of the potential constant expression checking in system headers
is also removed, since the problem it was working around is gone.
llvm-svn: 150059
This is a great warning, but it was observed that a ton of real world code violates
it all the time for (semi-)legitimate reasons. This warnings is fairly pedantic, which is good,
but not for everyone. For example, there is a fair amount of idiomatic code out there
that does "default: abort()", and similar idioms.
Addresses <rdar://problem/10814651>.
llvm-svn: 150055
that is referencing the member function, so we can index the referenced function.
Fixes rdar://10762375&10324915 & http://llvm.org/PR11192
llvm-svn: 150033
a typedef of std::pair. This slightly improves type-safety, but mostly
makes code using it clearer to read as well as making it possible to add
methods to the type.
Add such a method for efficiently single-step desugaring a split type.
Add a method to single-step desugaring a locally-unqualified type.
Implement both the SplitQualType and QualType methods in terms of that.
Also, fix a typo ("ObjCGLifetime").
llvm-svn: 150028
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006
MAP_ERROR to be remapped to MAP_WARNING. These new APIs are being added to
allow the diagnostic mapping's "no Werror" bit to be set, and potentially
downgrade anything already mapped to be a warning.
llvm-svn: 150001
Parsing of @implementations was based on modifying global state from
the parser; the logic for late parsing of methods was spread in multiple places
making it difficult to have a robust error recovery.
-it was difficult to ensure that we don't neglect parsing the lexed methods.
-it was difficult to setup the original objc container context for parsing the lexed methods
after completing ParseObjCAtImplementationDeclaration and returning to top level context.
Enhance parsing of @implementations by centralizing it in Parser::ParseObjCAtImplementationDeclaration().
ParseObjCAtImplementationDeclaration now returns only after an @implementation is fully parsed;
all the data and logic for late parsing of methods is now in one place.
This allows us to provide code-completion for late parsed methods with mis-matched braces.
rdar://10775381
llvm-svn: 149987
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
The new info is propagated to TSTLoc on template instantiation, getting rid of 3 FIXMEs in TreeTransform.h and another one Parser.cpp.
Simplified code in TypeSpecLocFiller visitor methods for DTSTLoc and DependentNameTypeLoc by removing what now seems to be dead code (adding corresponding assertions).
llvm-svn: 149923
can't produce a constant expression is not ill-formed (so long as some
instantiation of that function can produce a constant expression).
llvm-svn: 149802
MSVC has complained the definition of "inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, CanQualType T)" in clang/AST/CanonicalType.h.
llvm-svn: 149797
- Move the offending methods out of line and fix transitive includers.
- This required changing an enum in the PPCallback API into an unsigned.
llvm-svn: 149782
Fix all the files that depended on transitive includes of Diagnostic.h.
With this patch in place changing a diagnostic no longer requires a full rebuild of the StaticAnalyzer.
llvm-svn: 149781
Let ASTContext allocate the storage in its BumpPtrAllocator.
This will help us remove ASTContext's depedency on PartialDiagnostic.h soon.
llvm-svn: 149780
value of class type, look for a unique conversion operator converting to
integral or unscoped enumeration type and use that. Implements [expr.const]p5.
Sema::VerifyIntegerConstantExpression now performs the conversion and returns
the converted result. Some important callers of Expr::isIntegralConstantExpr
have been switched over to using it (including all of those required for C++11
conformance); this switch brings a side-benefit of improved diagnostics and, in
several cases, simpler code. However, some language extensions and attributes
have not been moved across and will not perform implicit conversions on
constant expressions of literal class type where an ICE is required.
In passing, fix static_assert to perform a contextual conversion to bool on its
argument.
llvm-svn: 149776
array new expression. This lays some groundwork for the implicit conversion to
integral or unscoped enumeration which C++11 ICEs undergo.
llvm-svn: 149772
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
want to provide "po"-like functionality which
treats the result of an expression implicitly as
"id" (if it is not otherwise known) and prints
it as an Objective-C object.
This has in the past been gated by the
"DebuggerSupport" language option, but that is
too general. Debuggers also provide other commands
like "print" that do not make any assumptions
about whether the object is an Objective-C object.
This patch makes the assumption conditional on a
new language option: DebuggerCastResultToId. I
have also made corresponding modifications to the
testsuite.
llvm-svn: 149735
template without a corresponding parameter pack, don't immediately
substitute the alias template. This is under discussion in the C++
committee, and may become ill-formed, but for now we match GCC.
llvm-svn: 149697
That llvm change removed the -trap-func backend option, so that using
-ftrap-function with clang would cause the backend to complain. Fix it
by adding the trap function name to the CodeGenOptions and passing it through
to the TargetOptions.
llvm-svn: 149679
* When we detect that a CFG block has inconsistent lock sets, point the
diagnostic at the location where we found the inconsistency, and point a note
at somewhere the inconsistently-locked mutex was locked.
* Fix the wording of the normal (non-loop, non-end-of-function) case of this
diagnostic to not suggest that the mutex is going out of scope.
* Fix the diagnostic emission code to keep a warning and its note together when
sorting the diagnostics into source location order.
llvm-svn: 149669
that just uses the new toolchain probing logic. This fixes linking with -m32 on
64 bit systems (the /32 dir was not being added to the search).
llvm-svn: 149652
into using non-absolute system includes (<foo>)...
... and introduce another hack that is simultaneously more heineous
and more effective. We whitelist Clang-supplied headers that augment
or override system headers (such as float.h, stdarg.h, and
tgmath.h). For these headers, Clang does not provide a module
mapping. Instead, a system-supplied module map can refer to these
headers in a system module, and Clang will look both in its own
include directory and wherever the system-supplied module map
suggests, then adds either or both headers. The end result is that
Clang-supplied headers get merged into the system-supplied module for
the C standard library.
As a drive-by, fix up a few dependencies in the _Builtin_instrinsics
module.
llvm-svn: 149611
* support the gcc __builtin_constant_p() ? ... : ... folding hack in C++11
* check for unspecified values in pointer comparisons and pointer subtractions
llvm-svn: 149578
The PROJ_SRC_DIR != PROJ_OBJ_DIR path was missing the directory
creation logic that was in the path for non-generated headers.
PR11903.
(The oversight was copied and pasted from LLVM's Makefile.rules,
where it apparently existed since time immemorial til it was
corrected in r127325.)
llvm-svn: 149551
argument in strncat.
The warning is ignored by default since it needs more qualification.
TODO: The warning message and the note are messy when
strncat is a builtin due to the macro expansion.
llvm-svn: 149524
cleans up and improves a few things:
- We get rid of the ugly dance of computing all of the captures in
data structures that clone those of CapturingScopeInfo, centralizing
the logic for accessing/updating these data structures
- We re-use the existing capture logic for 'this', which actually
works now.
Cleaned up some diagnostic wording in minor ways as well.
llvm-svn: 149516
This already exists in the CMake build, which is part of what makes
building clang separately from llvm via cmake possible. This cleans up
that discrepancy between the build systems (and sets the groundwork
for configuring clang separately, too).
llvm-svn: 149497
- Actually building the var -> capture mapping properly (there was an off-by-one error)
- Keeping track of the source location of each capture
- Minor QoI improvements, e.g, highlighing the prior capture if
there are multiple captures, pointing at the variable declaration we
found if we reject it.
As part of this, add standard citations for the various semantic
checks we perform, and note where we're not performing those checks as
we should.
llvm-svn: 149462
CFBridgingRetain/CFBridgingRelease calls instead
of __bridge_retained/__bridge_transfer casts as preferred
way of moving cf objects to arc land. // rdar://10207950
llvm-svn: 149449
Original log:
Convert ProgramStateRef to a smart pointer for managing the reference counts of ProgramStates. This leads to a slight memory
improvement, and a simplification of the logic for managing ProgramState objects.
# Please enter the commit message for your changes. Lines starting
llvm-svn: 149339
driver based on discussions with Doug Gregor. There are several issues:
1) The patch was not reviewed prior to commit and there were review comments.
2) The design of the functionality (triple-prefixed tool invocation)
isn't the design we want for Clang going forward: it focuses on the
"user triple" rather than on the "toolchain triple", and forces that
bit of state into the API of every single toolchain instead of
handling it automatically in the common base classes.
3) The tests provided are not stable. They fail on a few Linux variants
(Gentoo among them) and on mingw32 and some other environments.
I *am* interested in the Clang driver being able to invoke
triple-prefixed tools, but we need to design that feature the right way.
This patch just extends the previous hack without fixing the underlying
problems with it. I'm working on a new design for this that I will mail
for review by tomorrow.
I am aware that this removes functionality that NetBSD relies on, but
this is ToT, not a release. This functionality hasn't been properly
designed, implemented, and tested yet. We can't "regress" until we get
something that really works, both with the immediate use cases and with
long term maintenance of the Clang driver.
For reference, the original commit log:
Keep track of the original target the user specified before
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149337
Original log:
Convert ProgramStateRef to a smart pointer for managing the reference counts of ProgramStates. This leads to a slight memory
improvement, and a simplification of the logic for managing ProgramState objects.
llvm-svn: 149336
'-target'. The original flag was part of a flag group that marked it as
driver-only. The new flag didn't ever get equivalent treatment. This
caused the '-target' flag to get passed down to any raw GCC invocation.
Marking it as a driver option fixes this and PR11875.
llvm-svn: 149244
- Remove the printf0 special handling as we treat it as printf anyway.
- Perform basic checks (non-literal, empty) for all formats and not only printf/scanf.
llvm-svn: 149236
each of the targets. Use this for module requirements, so that we can
pin the availability of certain modules to certain target features,
e.g., provide a module for xmmintrin.h only when SSE support is
available.
Use these feature names to provide a nearly-complete module map for
Clang's built-in headers. Only mm_alloc.h and unwind.h are missing,
and those two are fairly specialized at the moment. Finishes
<rdar://problem/10710060>.
llvm-svn: 149227
for getting the name of the module file, unifying the code for
searching for a module with a given name (into lookupModule()) and
separating out the mapping to a module file (into
getModuleFileName()). No functionality change.
llvm-svn: 149197
like Darwin that don't support it. We should also complain about
invalid -fvisibility=protected, but that information doesn't seem
to exist at the most appropriate time, so I've left a FIXME behind.
llvm-svn: 149186
single attribute ("system") that allows us to mark a module as being a
"system" module. Each of the headers that makes up a system module is
considered to be a system header, so that we (for example) suppress
warnings there.
If a module is being inferred for a framework, and that framework
directory is within a system frameworks directory, infer it as a
system framework.
llvm-svn: 149143
-Wno-everything remap all warnings to ignored.
We can now use "-Wno-everything -W<warning>" to ignore all warnings except
specific ones.
llvm-svn: 149121
the direct serialization of the linked-list structure. Instead, use a
scheme similar to how we handle redeclarations, with redeclaration
lists on the side. This addresses several issues:
- In cases involving mixing and matching of many categories across
many modules, the linked-list structure would not be consistent
across different modules, and categories would get lost.
- If a module is loaded after the class definition and its other
categories have already been loaded, we wouldn't see any categories
in the newly-loaded module.
llvm-svn: 149112
function definition can produce a constant expression. This also provides the
last few checks for [dcl.constexpr]p3 and [dcl.constexpr]p4.
llvm-svn: 149108
ARM supports clz and ctz directly and both operations have well-defined
results for zero. There is no disadvantage in performance to using the
defined-at-zero versions of llvm.ctlz/cttz intrinsics. We're running into
ARM-specific code written with the assumption that __builtin_clz(0) == 32,
even though that value is technically undefined. The code is failing now
because of llvm optimizations that are taking advantage of the undef
behavior (specifically svn r147255). There's nothing wrong with that
optimization on x86 where any incorrect assumptions about __builtin_clz(0)
will quickly be exposed. For ARM, though, optimizations based on that undef
behavior are likely to cause subtle bugs. Other targets with defined-at-zero
clz/ctz support may want to override the default behavior as well.
llvm-svn: 149086
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149083
At this point this is largely cosmetic, but it opens the door to replace
ProgramStateRef with a smart pointer that more eagerly acts in the role
of reclaiming unused ProgramState objects.
llvm-svn: 149081
leaves "finalize' behind and in arc mode, does not
include it. This allows the migrated source to be compiled
in both gc and arc mode. // rdar://10532441
llvm-svn: 149079
provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
I'm not adding a testcase because -ccc-host-triple is slated to be removed,
but clang crashes if you try to use -ccc-host-triple without this fix.
llvm-svn: 149048
-fixit-recompile
applies fixits and recompiles the result
-fixit-to-temporary
applies fixits to temporary files
-fix-only-warnings">,
applies fixits for warnings only, not errors
Combining "-fixit-recompile -fixit-to-temporary" allows testing the result of fixits
without touching the original sources.
llvm-svn: 149027
Now the lexer just produces a token and the parser is the one responsible for
activating it.
This fixes problem like the one pr11797 where the lexer and the parser were not
in sync. This also let us be more strict on where in the file we accept
these pragmas.
llvm-svn: 149014
to the underlying consumer implementation. This allows us to unique reports across analyses to multiple functions (which
shows up with inlining).
llvm-svn: 148997
Pass a typo correction callback object from ParseCastExpr to
Sema::ActOnIdExpression to be a bit more selective about what kinds of
corrections will be allowed for unknown identifiers.
llvm-svn: 148973
The new callback, in addition to limiting which keywords to include in
the pool of typo correction candidates, also filters out non-keyword
candidates that don't refer to (template) functions that accept the
number of arguments that are present for the call being recovered.
llvm-svn: 148962
did anything. The two big pieces of functionality it tried to provide
was to cache the ToolChain objects for each target, and to figure out
the exact target based on the flag set coming in to an invocation.
However, it had a lot of flaws even with those goals:
- Neither of these have anything to do with the host, or its info.
- The HostInfo class was setup as a full blown class *hierarchy* with
a separate implementation for each "host" OS. This required
dispatching just to create the objects in the first place.
- The hierarchy claimed to represent the host, when in fact it was
based on the target OS.
- Each leaf in the hierarchy was responsible for implementing the flag
processing and caching, resulting in a *lot* of copy-paste code and
quite a few bugs.
- The caching was consistently done based on architecture alone, even
though *any* aspect of the targeted triple might change the behavior
of the configured toolchain.
- Flag processing was already being done in the Driver proper,
separating the flag handling even more than it already is.
Instead of this, we can simply have the dispatch logic in the Driver
which previously created a HostInfo object create the ToolChain objects.
Adding caching in the Driver layer is a tiny amount of code. Finally,
pulling the flag processing into the Driver puts it where it belongs and
consolidates it in one location.
The result is that two functions, and maybe 100 lines of new code
replace over 10 classes and 800 lines of code. Woot.
This also paves the way to introduce more detailed ToolChain objects for
various OSes without threading through a new HostInfo type as well, and
the accompanying boiler plate. That, of course, was the yak I started to
shave that began this entire refactoring escapade. Wheee!
llvm-svn: 148950
a HostInfo reference. Nothing about the HostInfo was used by any
toolchain except digging out the driver from it. This just makes that
a lot more direct. The change was accomplished entirely mechanically.
It's one step closer to removing the shim full of buggy copy/paste code
that is HostInfo.
llvm-svn: 148945
helped stage the refactoring of things a bit, but really isn't the right
place for it. The driver may be responsible for compilations with many
different targets. In those cases, having a target triple in the driver
is actively misleading because for many of those compilations that is
not actually the triple being targeted.
This moves the last remaining users of the Driver's target triple to
instead use the ToolChain's target triple. The toolchain has a single,
concrete target it operates over, making this a more stable and natural
home for it.
llvm-svn: 148942
return pre-built lists. Instead, it feeds the methods it deserializes
to Sema so that Sema can unique them, which keeps the chains shorter.
llvm-svn: 148889
This is accomplished by periodically reclaiming nodes in the graph. This was an optimization
done before the CFG was linearized, but the CFG linearization destroyed that optimization since each
freshly created node couldn't be reclaimed and we only looked at a window of nodes created between
each ProcessStmt. This optimization can be reclaimed my merely expanding the window to N number of nodes.
llvm-svn: 148888
specific to migrator. Use its first option to
warn migrating from GC to arc when
NSAllocateCollectable/NSReallocateCollectable is used.
// rdar://10532541
llvm-svn: 148887
address safety analysis (such as e.g. AddressSanitizer or SAFECode) for a specific function.
When building with AddressSanitizer, add AddressSafety function attribute to every generated function
except for those that have __attribute__((no_address_safety_analysis)).
With this patch we will be able to
1. disable AddressSanitizer for a particular function
2. disable AddressSanitizer-hostile optimizations (such as some cases of load widening) when AddressSanitizer is on.
llvm-svn: 148842
pointer to incomplete type from an ExtWarn to an error. We put the
ExtWarn in place as part of a workaround for Boost (PR6527), but it
(1) doesn't actually match a GCC extension and (2) has been fixed for
two years in Boost, and (3) causes us to emit code that fails badly at
run time, so it's a bad idea to keep it. Fixes PR11803.
llvm-svn: 148838
when it actually has changed (and not, e.g., when we've simply attached a
deserialized macro definition). Good for ~1.5% reduction in module
file size, mostly in the identifier table.
llvm-svn: 148808
inside the innards of the Driver implementation, and only ever
implemented to return 'true' for the Darwin OSes. Instead use a more
direct query on the target triple and a comment to document why the
target matters here.
If anyone is worried about this predicate getting wider use or improper
use, I can make it a local or private predicate in the driver.
llvm-svn: 148797
The Driver has a fixed target, whether we like it or not, the
DefaultTargetTriple is not a default. This at least makes things more
honest. I'll eventually get rid of most (if not all) of
DefaultTargetTriple with this proper triple object. Bit of a WIP.
llvm-svn: 148796
This is the last piece of N3031 (decltype in weird places) - supporting
the use of decltype in a class ctor's member-initializer-list to
specify the base classes to initialize.
Reviewed by Richard Smith.
llvm-svn: 148789
Rewording the diagnostic to be more precise/correct: "default label in switch
which covers all enumeration values" and changed the switch to
-Wcovered-switch-default
llvm-svn: 148783
Changing wording to include the word "explicitly" (as in "enumeration value ...
not /explicitly/ handled by switch"), as suggested by Richard Smith.
Also, now that the diagnostic text differs between -Wswitch and -Wswitch-enum,
I've simplified the test cases a bit.
llvm-svn: 148781