Fixed ThreadPlanCallFunction::ReportRegisterState(...) to only dump when
verbose logging is enabled and fixed the function to use the new
RegisterValue method of reading registers.
Fixed the GDB remote client to not send a continue packet after receiving
stdout or stderr from the inferior process.
llvm-svn: 131628
EDOperandIndexForToken(token) calls fail to return a meaningful operand index,
resulting in both operands and comment being empty. We will use the raw disassembly
string as output in these cases.
There is still a known bug where llvm:tB (A8.6.16 B Encoding T2) is not being processed
as a branch instruction and therefore the symbolic information is not being dumped for
non-raw mode.
llvm-svn: 131615
types.
Added the abilty to set a RegisterValue type via accessor and enum.
Added the ability to read arguments for a function for ARM if you are on the
first instruction in ABIMacOSX_arm.
Fixed an issue where a file descriptor becoming invalid could cause an
inifnite loop spin in the libedit thread.
llvm-svn: 131610
addr_t
Address::GetCallableLoadAddress (Target *target) const;
This will resolve the load address in the Address object and optionally
decorate the address up to be able to be called. For all non ARM targets, this
just essentially returns the result of "Address::GetLoadAddress (target)". But
for ARM targets, it checks if the address is Thumb, and if so, it returns
an address with bit zero set to indicate a mode switch to Thumb. This is how
we need function pointers to be for return addresses and when resolving
function addresses for the JIT. It is also nice to centralize this in one spot
to avoid having multiple copies of this code.
llvm-svn: 131588
bool SectionLoadList::ResolveLoadAddress (addr_t load_addr, Address &so_addr) const;
Where if the address is in the last map entry, we need to look it up correctly.
My previous fix was incorrect where it looked in the first if there were
no addresses in the map that were > load_addr. Now we correctly look in the
last entry if our std::map::lower_bound search returns the end of the
collection.
llvm-svn: 131550
bool
Address::SetLoadAddress (lldb::addr_t load_addr, Target *target);
Added an == and != operator to RegisterValue.
Modified the ThreadPlanTracer to use RegisterValue objects to store the
register values when single stepping. Also modified the output to be a bit
less wide.
Fixed the ABIMacOSX_arm to not overwrite stuff on the stack. Also made the
trivial function call be able to set the ARM/Thumbness of the target
correctly, and also sets the return value ARM/Thumbness.
Fixed the encoding on the arm s0-s31 and d16 - d31 registers when the default
register set from a standard GDB server register sets.
llvm-svn: 131517
object.__nonzero__(self) is called to implement truth value testing and the built-in operation bool(),
via a simple delegation to self.IsValid().
Change tests under python_api/lldbutil to utilize this mechanism.
llvm-svn: 131494
all register values. There is some junk that was appearing at the end
of the result the 'g' packet (read all register values). This function
was being called in:
bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
Then the packet data for the 'G' packet (write all registers) was being
placed into "data_sp" so the:
bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
could restore it. In attempting to clean up the extra junk at the end of this
packet data, the packet was getting truncated.
llvm-svn: 131468
Modified ClangUserExpression and ClangUtilityFunction to display the actual
error (if one is available) that made the JIT fail instead of a canned
response.
Fixed the restoring of all register values when the 'G' packet doesn't work
to use the correct data.
llvm-svn: 131454
over when running JITed expressions. The allocated memory cache will cache
allocate memory a page at a time for each permission combination and divvy up
the memory and hand it out in 16 byte increments.
llvm-svn: 131453
give the reason for the interrupt. Also make sure it we don't want to unwind from the evaluation
we print something if it is interrupted.
llvm-svn: 131448
unambiguous iteration support. So that we could, for example:
...
REGs = lldbutil.get_GPRs(frame)
print "Number of general purpose registers: %d" % len(REGs)
for reg in REGs:
print "%s => %s" %(reg.GetName(), reg.GetValue())
...
llvm-svn: 131418
Prior to this fix we would often call SendPacketAndWaitForResponse() which
returns the number of bytes in the response. The UNSUPPORTED response in the
GDB remote protocol is zero bytes and we were checking for it inside an if
statement:
if (SendPacketAndWaitForResponse(...))
{
if (response.IsUnsupportedResponse())
{
// UNSUPPORTED...
// This will never happen...
}
}
We now handle is properly as:
if (SendPacketAndWaitForResponse(...))
{
}
else
{
// UNSUPPORTED...
}
llvm-svn: 131393
the appropriate registers for arm and x86_64. The register names for the
arguments that are the size of a pointer or less are all named "arg1", "arg2",
etc. This allows you to read these registers by name:
(lldb) register read arg1 arg2 arg3
...
You can also now specify you want to see alternate register names when executing
the read register command:
(lldb) register read --alternate
(lldb) register read -A
llvm-svn: 131376
thread plan. In order to get the return value, you can call:
void
ThreadPlanCallFunction::RequestReturnValue (lldb::ValueSP &return_value_sp);
This registers a shared pointer to a return value that will get filled in if
everything goes well. After the thread plan is run the return value will be
extracted for you.
Added an ifdef to be able to switch between the LLVM MCJIT and the standand JIT.
We currently have the standard JIT selected because we have some work to do to
get the MCJIT fuctioning properly.
Added the ability to call functions with 6 argument in the x86_64 ABI.
Added the ability for GDBRemoteCommunicationClient to detect if the allocate
and deallocate memory packets are supported and to not call allocate memory
("_M") or deallocate ("_m") if we find they aren't supported.
Modified the ProcessGDBRemote::DoAllocateMemory(...) and ProcessGDBRemote::DoDeallocateMemory(...)
to be able to deal with the allocate and deallocate memory packets not being
supported. If they are not supported, ProcessGDBRemote will switch to calling
"mmap" and "munmap" to allocate and deallocate memory instead using our
trivial function call support.
Modified the "void ProcessGDBRemote::DidLaunchOrAttach()" to correctly ignore
the qHostInfo triple information if any was specified in the target. Currently
if the target only specifies an architecture when creating the target:
(lldb) target create --arch i386 a.out
Then the vendor, os and environemnt will be adopted by the target.
If the target was created with any triple that specifies more than the arch:
(lldb) target create --arch i386-unknown-unknown a.out
Then the target will maintain its triple and not adopt any new values. This
can be used to help force bare board debugging where the dynamic loader for
static files will get used and users can then use "target modules load ..."
to set addressses for any files that are desired.
Added back some convenience functions to the lldb_private::RegisterContext class
for writing registers with unsigned values. Also made all RegisterContext
constructors explicit to make sure we know when an integer is being converted
to a RegisterValue.
llvm-svn: 131370
solve the build break due to the lack of this method.
It also propose a solution to the API changes in RegisterContext.
I upgraded also the the python version in the makefile. My linux
installation has python2.7 and AFAIK also the latest ubuntu
has this version of python so maybe is worth upgrading.
Patch by Marco Minutoli <mminutoli@gmail.com>
[Note: I had to hand merge in the diffs since patch thinks it is a corrupt patch.]
llvm-svn: 131313
as non-const in the debug information, added a fallback
to GetFunctionAddress, adding the const qualifier after
the fact and searching again.
llvm-svn: 131299
representing variables whose type must be inferred
from the way they are used. Functions without debug
information now return UnknownAnyTy and must be cast.
Variables with no debug information are not yet using
UnknownAnyTy; instead they are assumed to be void*.
Support for variables of unknown type is coming (and,
in fact, some relevant support functions are included
in this commit) but will take a bit of extra effort.
The testsuite has also been updated to reflect the new
requirement that the result of printf be cast, i.e.
expr (int) printf("Hello world!")
llvm-svn: 131263
of the current instruction plus 8. And for Triple::thumb, it is plus 4.
rdar://problem/9170971
lldb disassembly's symbol information not correct (off by 2?)
llvm-svn: 131256
pointers:
virtual bool
PrepareTrivialCall (Thread &thread,
lldb::addr_t sp,
lldb::addr_t functionAddress,
lldb::addr_t returnAddress,
lldb::addr_t *arg1_ptr,
lldb::addr_t *arg2_ptr,
lldb::addr_t *arg3_ptr) const = 0;
Prior to this it was:
virtual bool
PrepareTrivialCall (Thread &thread,
lldb::addr_t sp,
lldb::addr_t functionAddress,
lldb::addr_t returnAddress,
lldb::addr_t arg,
lldb::addr_t *this_arg,
lldb::addr_t *cmd_arg) const = 0;
This was because the function that called this slowly added more features to
be able to call a C++ member function that might have a "this" pointer, and
then later added "self + cmd" support for objective C. Cleaning this code up
and the code that calls it makes it easier to implement the functions for
new targets.
The MacOSX_arm::PrepareTrivialCall() is now filled in and ready for testing.
llvm-svn: 131221
o get_parent_frame(frame)
o get_args_as_string(frame)
to lldbutil.py and create TestFrameUtils.py to exercise the utils.
Plus re-arrange the test/python_api/lldbutil to have three directories
for testing iteration, process stack traces, and the just added frame utils.
llvm-svn: 131213
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
compile unit, which has an external reference to symbols defined in foo.m, the type query:
in this case, 'expression (NSArray*)array_token'
continues to work.
This test is to accompany http://llvm.org/viewvc/llvm-project?rev=131145&view=rev.
llvm-svn: 131154
looked up. Queries for global types were made
too specific -- including the current module
and compile unit in the query was limiting the
search when we wanted a truly global search.
llvm-svn: 131145
Also add three convenience functions get_GPRs(frame), get_FPRs(frame), and get_ESRs(frame) to get the general
purpose registers, the floating point registers, and the exception state registers.
Add TestRegistersIterator.py to test these added functions of lldbutil.py.
llvm-svn: 131144
treated as being permanently resident in target
memory. In fact, since the expression's stack frame
is deleted and potentially re-used after the
expression completes, the variables need to be treated
as being freeze-dried.
llvm-svn: 131104
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
a new "QLaunchArch:<arch-name>" where <arch-name> is the architecture name.
This allows us to remotely launch a debugserver and then set the architecture
for the binary we will launch.
llvm-svn: 131064
variables be evaluated statically.
Also fixed a bug that caused the results of
statically-evaluated expressions to be materialized
improperly.
This bug also removes some duplicate code.
llvm-svn: 131042
Removed the "image" command and moved it to "target modules". Added an alias
for "image" to "target modules".
Added some new target commands to be able to add and load modules to a target:
(lldb) target modules add <path>
(lldb) target modules load [--file <path>] [--slide <offset>] [<sect-name> <sect-load-addr> ...]
So you can load individual sections without running a target:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib __TEXT 0x7fccc80000 __DATA 0x1234000000
Or you can rigidly slide an entire shared library:
(lldb) target modules load --file /usr/lib/libSystem.B.dylib --slid 0x7fccc80000
This should improve bare board debugging when symbol files need to be slid around manually.
llvm-svn: 130796
convenience variables (from the ExecutionContext) each time
it is entered: lldb.debugger, lldb.target, lldb.process,
lldb.thread, lldb.frame.
If a frame (or thread, process, etc) does not currently exist,
the variable contains the Python value 'None'.
llvm-svn: 130792
Change one test sequence to detect the '** End Stop Hooks **' marker emitted by the
stop hooks mechanism and check for whether the 'expr ptr' stop-hook has been run.
Also, change the TestBase.tearDown() to wait for 2 seocnds before forcefully kill
the pexpect-spawned child lldb process.
llvm-svn: 130767
to spawn an lldb child command. The test is not "correct" in that the '** Stop Hooks **'
message emitted by the Target implementation is invoked asynchronously and is using a separate:
CommandReturnObject result;
command return object that what the driver passes to the normal command interpreter loop.
But it can help test our output serialization work.
I need to modify the test case later to maybe only test that "-o 'expr ptr'" option does indeed work.
llvm-svn: 130742
command line driver, including the lldb prompt being output by
editline, the asynchronous process output & error messages, and
asynchronous messages written by target stop-hooks.
As part of this it introduces a new Stream class,
StreamAsynchronousIO. A StreamAsynchronousIO object is created with a
broadcaster, who will eventually broadcast the stream's data for a
listener to handle, and an event type indicating what type of event
the broadcaster will broadcast. When the Write method is called on a
StreamAsynchronousIO object, the data is appended to an internal
string. When the Flush method is called on a StreamAsynchronousIO
object, it broadcasts it's data string and clears the string.
Anything in lldb-core that needs to generate asynchronous output for
the end-user should use the StreamAsynchronousIO objects.
I have also added a new notification type for InputReaders, to let
them know that a asynchronous output has been written. This is to
allow the input readers to, for example, refresh their prompts and
lines, if desired. I added the case statements to all the input
readers to catch this notification, but I haven't added any code for
handling them yet (except to the IOChannel input reader).
llvm-svn: 130721
interface.
Added a quick way to set the platform though the SBDebugger interface. I will
actually an a SBPlatform support soon, but for now this will do.
ConnectionFileDescriptor can be passed a url formatted as: "fd://<fd>" where
<fd> is a file descriptor in the current process. This is handy if you have
services, deamons, or other tools that can spawn processes and give you a
file handle.
llvm-svn: 130565
the breakpoint ID and provides the semantics needed for '==' and '!='. And
modify LLDBIteratorTestCase.lldb_iter_2() to use '==' between two SBBreakpoint's.
llvm-svn: 130531
This is so that the objects which support the iteration protocol are immediately obvious
from looking at the lldb.py file.
SBTarget supports two types of iterations: module and breakpoint. For an SBTarget instance,
you will need to issue either:
for m in target.module_iter()
or
for b in target.breakpoint_iter()
For other single iteration protocol objects, just use, for example:
for thread in process:
ID = thread.GetThreadID()
for frame in thread:
frame.Disassemble()
....
llvm-svn: 130442
new OptionGroup subclasses for:
- output file for use with options:
long opts: --outfile <path> --append--output
short opts: -o <path> -A
- format for use with options:
long opts: --format <format>
- variable object display controls for depth, pointer depth, wether to show
types, show summary, show location, flat output, use objc "po" style summary.
Modified ValueObjectMemory to be able to be created either with a TypeSP or
a ClangASTType.
Switched "memory read" over to use OptionGroup subclasses: one for the outfile
options, one for the command specific options, and one for the format.
llvm-svn: 130334
method names of all the lldb container objects and returns an iterator object when
passed an eligible lldb container object.
Example:
from lldb_util import smart_iter
for thread in smart_iter(process):
ID = thread.GetThreadID()
if thread.GetStopReason() == lldb.eStopReasonBreakpoint:
stopped_due_to_breakpoint = True
for frame in smart_iter(thread):
self.assertTrue(frame.GetThread().GetThreadID() == ID)
...
Add a test case for lldb.smart_iter().
llvm-svn: 130332
Switch the EmulateInstruction to use the standard RegisterInfo structure
that is defined in the lldb private types intead of passing the reg kind and
reg num everywhere. EmulateInstruction subclasses also need to provide
RegisterInfo structs given a reg kind and reg num. This eliminates the need
for the GetRegisterName() virtual function and allows more complete information
to be passed around in the read/write register callbacks. Subclasses should
always provide RegiterInfo structs with the generic register info filled in as
well as at least one kind of register number in the RegisterInfo.kinds[] array.
llvm-svn: 130256
are defined as enumerations. Current bits include:
eEmulateInstructionOptionAutoAdvancePC
eEmulateInstructionOptionIgnoreConditions
Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:
virtual bool
SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;
Where instruction types are defined as:
//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------
typedef enum InstructionType
{
eInstructionTypeAny, // Support for any instructions at all (at least one)
eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp
eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer
eInstructionTypeAll // All instructions of any kind
} InstructionType;
This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.
Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.
The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.
Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file:
source/Utility/ARM_DWARF_Registers.c
Took some of plug-ins out of the lldb_private namespace.
llvm-svn: 130189
i.e., with 'SBStream &description' first, followed by 'DescriptionLevel level'.
Modify lldbutil.py so that get_description() for a target or breakpoint location
can just take the lldb object itself without specifying an option to mean option
lldb.eDescriptionLevelBrief. Modify TestTargetAPI.py to exercise this logic path.
llvm-svn: 130147
inline contexts when the deepest most block is not inlined.
Added source path remappings to the lldb_private::Target class that allow it
to remap paths found in debug info so we can find source files that are elsewhere
on the current system.
Fixed disassembly by function name to disassemble inline functions that are
inside other functions much better and to show enough context before the
disassembly output so you can tell where things came from.
Added the ability to get more than one address range from a SymbolContext
class for the case where a block or function has discontiguous address ranges.
llvm-svn: 130044
pointer to a ValueObject or any of its dependent ValueObjects, and the whole cluster will
stay around as long as that shared pointer stays around.
llvm-svn: 130035
before issuing the 'process connect ...' command.
test_comand_regex(): assign the spawned child to self.child so it gets automatically
shutdown during TestBase.tearDown(self).
llvm-svn: 130015
set by default when dumping registers. If you want to see all of the register
sets you can use the "--all" option:
(lldb) register read --all
If you want to just see some register sets, you can currently specify them
by index:
(lldb) register read --set 0 --set 2
We need to get shorter register set names soon so we can specify the register
sets by name without having to type too much. I will make this change soon.
You can also have any integer encoded registers resolve the address values
back to any code or data from the object files using the "--lookup" option.
Below is sample output when stopped in the libc function "puts" with some
const strings in registers:
Process 8973 stopped
* thread #1: tid = 0x2c03, 0x00007fff828fa30f libSystem.B.dylib`puts + 1, stop reason = instruction step into
frame #0: 0x00007fff828fa30f libSystem.B.dylib`puts + 1
(lldb) register read --lookup
General Purpose Registers:
rax = 0x0000000100000e98 "----------------------------------------------------------------------"
rbx = 0x0000000000000000
rcx = 0x0000000000000001
rdx = 0x0000000000000000
rdi = 0x0000000100000e98 "----------------------------------------------------------------------"
rsi = 0x0000000100800000
rbp = 0x00007fff5fbff710
rsp = 0x00007fff5fbff280
r8 = 0x0000000000000040
r9 = 0x0000000000000000
r10 = 0x0000000000000000
r11 = 0x0000000000000246
r12 = 0x0000000000000000
r13 = 0x0000000000000000
r14 = 0x0000000000000000
r15 = 0x0000000000000000
rip = 0x00007fff828fa30f libSystem.B.dylib`puts + 1
rflags = 0x0000000000000246
cs = 0x0000000000000027
fs = 0x0000000000000000
gs = 0x0000000000000000
As we can see, we see two constant strings and the PC (register "rip") is
showing the code it resolves to.
I fixed the register "--format" option to work as expected.
Added a setting to disable skipping the function prologue when setting
breakpoints as a target settings variable:
(lldb) settings set target.skip-prologue false
Updated the user settings controller boolean value handler funciton to be able
to take the default value so it can correctly respond to the eVarSetOperationClear
operation.
Did some usability work on the OptionValue classes.
Fixed the "image lookup" command to correctly respond to the "--verbose"
option and display the detailed symbol context information when looking up
line table entries and functions by name. This previously was only working
for address lookups.
llvm-svn: 129977
rather than calling "process kill" explicitly at the end of the test.
The test might not even reach the end because it could have failed prematurely.
llvm-svn: 129963
and TestAliases.py. Pass the keyword argument 'check=False' to:
self.runCmd("script my.date()", check=False)
since we want to restore sys.stdout no matter what the outcome of the runCmd is.
llvm-svn: 129949
it everywhere internally.
Modified the "command regex" command to be able to specify all regular
expressions on the command line. For example:
(lldb) command regex f s/^$/finish/ 's/([0-9]+)/frame select %1/'
Also improved the error reporting when an invalid 's/<regex>/<subst>/' argument
is given.
llvm-svn: 129889