This flag disables link.exe's crash handler so that normal windows error
reporting and crash dumping occurs. For now it is reasonable for LLD to
ignore the flag.
Chromium is currently using this flag to collect minidumps of link.exe
crashing, and it breaks the LLD build.
llvm-svn: 264439
This patch simplifies the isRelRelative for AArch64 and add the missing
ones for bootstrap and test-suite. It also adds more testing for
shared object creation.
llvm-svn: 264322
The stack-size.yaml test had an empty atom content array. This is
legal, but asking a BumpPtrAllocator for 0 sized data may not be
legal. Instead just avoid requesting any data when we can just return
an empty ArrayRef instead.
llvm-svn: 264234
Its possible for file to have no entry atom which means that there
is no atom to check for being a thumb function. Instead just skip
the thumb check and set the entry address to 0, which matches the
current behaviour of getting a default initialised int from a map.
llvm-svn: 264233
On a 32-bit output, we may write LC_MAIN (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264232
We were casting a potentially unaligned pointer to uint32_t and
dereferencing. As the pointer ultimately comes from the object file,
there's no way to guarantee alignment, so use the little32_t read instead.
Also, little32_t knows about endianness, so in theory this may have broken on
big endian machines.
llvm-svn: 264231
The .o path always makes sure to store a power of 2 value in the
Section alignment. However, the YAML code didn't verify this.
Added verification and updated all the tests which had a 3 but meant
to have 2^3.
llvm-svn: 264228
The size of a section can be zero, even when it contains atoms, so
long as all of the atoms are also size 0. In this case we were
allocating space for a 0 sized buffer.
Changed this to only allocate when we need the space, but also cleaned
up all the code to use MutableArrayRef instead of uint8_t* so its much much
safer as we get bounds checking on all of our section creation logic.
llvm-svn: 264204
On a 32-bit output, we may write LC_SOURCE_VERSION (which contains a uint64_t) to
an unaligned address. This changes it to use a memcpy instead which is UB safe.
llvm-svn: 264202
We were already copying this data to a temporary for endian swaps. Now
we just always copy it, but still only do the endian swaps when needed.
llvm-svn: 264172
Turns out that checking only x86 for empty atoms to fix UBSan then
requires the same code in the other targets too. Better to just
check this in the main run loop instead of in each target.
Should be NFC, other than fixing UBSan failures.
llvm-svn: 264116
This was caught by the UBSan bot. When the atom has no size, we would
issue a memcpy with size0 and a nullptr for the source.
Also, this code should never have references inside an empty atom so
add an assert for that while we're here.
llvm-svn: 264115
Ensure we keep the symbol we need to before it reaches
the Writer (and hit an assertion), changing its linkage
from linkonce_odr to weak. For a more detailed description
of the problem, see PR19901 where a similar problem was
fixed for the gold plugin. Thanks to Rafael for providing
a testcase.
llvm-svn: 264111
If the LHS of 'a = b' already had an atom in it then we wouldn't
call the destructor. This happens when we use something like
std::remove_if which is done in the CompactUnwindPass. Should fix
the leaks on the mach-o/unwind-info-simple-x86_64.yaml test case.
Lang and I are going to take a look at removing OwningAtomPtr in
favour of a std::unique_ptr but just trying to get the bots green
so we have a good baseline first.
llvm-svn: 264097
The code for LTO has been growing, so now is probably a good time to
move it to its own file. SymbolTable.cpp is for symbol table, and
because compiling bitcode files are semantically not a part of
symbol table, this is I think a good thing to do.
http://reviews.llvm.org/D18370
llvm-svn: 264091
OwningAtomPtr does not have OwningAtomPtr(OwningAtomPtr&) or the equivalent
operator= as we only want to use rvalue references in it.
SortKey didn't like this on MSVC as it was synthesizing SortKey(SortKey&) and
trying to use the OwningAtomPtr(OwningAtomPtr&) method which was private an
unimplemented.
Now we explicitly have the methods on SortKey so hopefully the bot will be
happier.
llvm-svn: 264077
The AtomVector class is an internal detail of File so I moved it
to be protected in r264067. However, the MSVC bots don't like the
global declarations of type File::AtomVector in File.cpp so it needs
to go back to being public for now.
llvm-svn: 264070
This is a re-commit of r264022 with a fix for MSVC. The issue there was
that the code was running DefinedAtom::~Atom() for some value and instead
needed to cast to Atom before running ~Atom. Original commit message follows.
Currently each File contains an BumpPtrAllocator in which Atom's are
allocated. Some Atom's contain data structures like std::vector which
leak as we don't run ~Atom when they are BumpPtrAllocate'd.
Now each File actually owns its Atom's using an OwningAtomPtr. This
is analygous to std::unique_ptr and may be replaced by it if possible.
An Atom can therefore only be owned by a single File, so the Resolver now
moves them from one File to another. The MachOLinkingContext owns the File's
and so clears all the Atom's in ~MachOLinkingContext, then delete's all the
File's. This makes sure all Atom's have been destructed before any of the
BumpPtrAllocator's in which they run have gone away.
Should hopefully fix the remaining leaks. Will keep an eye on the bots to
make sure.
llvm-svn: 264067
When a tls access is optimized, a group of relocations is converted at a
time.
We were already skipping relocations that were optimized out in
relocate, but not in scanRelocs.
This is a small optimization. I got here while working on a patch that
will always keep scanRelocs and relocate in sync.
llvm-svn: 264048
R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX relocations were added in latest ABI:
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf
They should be generated instead of R_X86_64_GOTPCREL for cases
when relaxation is possible. Currently this patch just process them in the
same way like R_X86_64_GOTPCREL. That should work for now
and we can implement relaxations later.
There is no testcases provided as I think there is no way to generate
such relocations using llvm-mc atm.
Differential revision: http://reviews.llvm.org/D18301
llvm-svn: 264043
Now local symbols have SymbolBody so we can handle all kind of symbols
in the GotSection::addEntry method. The patch moves the code from
addMipsLocalEntry to addEntry. NFC.
Differential Revision: http://reviews.llvm.org/D18302
llvm-svn: 264032
This reverts commit r264022.
This breaks the Window's bots which don't like that i'm calling ~Atom when
the this pointer is a sublcass of Atom.
Reverting for now until I try find a better fix. I tried using std::unique_ptr with
a custom deleter as a quick fix, but it didn't work well in the YAML parser.
llvm-svn: 264023
Currently each File contains an BumpPtrAllocator in which Atom's are
allocated. Some Atom's contain data structures like std::vector which
leak as we don't run ~Atom when they are BumpPtrAllocate'd.
Now each File actually owns its Atom's using an OwningAtomPtr. This
is analygous to std::unique_ptr and may be replaced by it if possible.
An Atom can therefore only be owned by a single File, so the Resolver now
moves them from one File to another. The MachOLinkingContext owns the File's
and so clears all the Atom's in ~MachOLinkingContext, then delete's all the
File's. This makes sure all Atom's have been destructed before any of the
BumpPtrAllocator's in which they run have gone away.
Should hopefully fix the remaining leaks. Will keep an eye on the bots to
make sure.
llvm-svn: 264022
In trying to fix the leaks in the MachO lld codebase, we need to have
a better model for file and atom ownership. Having the context own
everything seems like the simplest model, so change all the passes to
allocate File's on the context instead of owning files as a member.
llvm-svn: 264004