Reported at https://reviews.llvm.org/D64930#1642223
If the only section of a PT_LOAD is a SHT_NOBITS section (e.g. .bss), we
may not align its sh_offset. p_offset of the PT_LOAD will be set to
sh_offset, and we will get p_offset!=p_vaddr (mod p_align). If such
executable is mapped by the Linux kernel, it will segfault.
After D64906, this may happen the non-linker script case.
The linker script case has had this issue for a long time.
This was fixed by rL321657 (but the test linkerscript/nobits-offset.s
failed to test a SHT_NOBITS section), but broken by rL345154.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D66658
llvm-svn: 369828
If the dot gets moved by an explicit section address, an empty gap between sections could be created. The encompassing region for the section being parsed needs to be expanded to include the gap.
Differential Revision: https://reviews.llvm.org/D65722
Patch by Gabriel Smith!
llvm-svn: 368379
We prioritize non-* wildcards overs VER_NDX_LOCAL/VER_NDX_GLOBAL "*".
This patch generalizes the rule to "*" of other versions and thus fixes PR40176.
I don't feel strongly about this GNU linkers' behavior but the
generalization simplifies code.
Delete `config->defaultSymbolVersion` which was used to special case
VER_NDX_LOCAL/VER_NDX_GLOBAL "*".
In `SymbolTable::scanVersionScript`, custom versions are handled the same
way as VER_NDX_LOCAL/VER_NDX_GLOBAL. So merge
`config->versionScript{Locals,Globals}` into `config->versionDefinitions`.
Overall this seems to simplify the code.
In `SymbolTable::assign{Exact,Wildcard}Versions`,
`sym->verdefIndex == config->defaultSymbolVersion` is changed to
`verdefIndex == UINT32_C(-1)`.
This allows us to give duplicate assignment diagnostics for
`{ global: foo; };` `V1 { global: foo; };`
In test/linkerscript/version-script.s:
vs_index of an undefined symbol changes from 0 to 1. This doesn't matter (arguably 1 is better because the binding is STB_GLOBAL) because vs_index of an undefined symbol is ignored.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D65716
llvm-svn: 367869
An R_*_IRELATIVE represents the address of a STT_GNU_IFUNC symbol
(redirected at runtime) which is non-preemptable and is not associated
with a canonical PLT (associated with a symbol with a section index of
SHN_UNDEF but a non-zero st_value).
.rel[a].plt [DT_JMPREL, DT_JMPREL+DT_JMPRELSZ) contains relocations that
can be lazily resolved. R_*_IRELATIVE are always eagerly resolved, so
conceptually they do not belong to .rela.plt. "iplt" is mostly a misnomer.
glibc powerpc and powerpc64 do not resolve R_*_IRELATIVE if they are in .rela.plt.
// a.o - synthesized PLT call stub has an R_*_IRELATIVE
void ifunc(); int main() { ifunc(); }
// b.o
static void real() {}
asm (".type ifunc, %gnu_indirect_function");
void *ifunc() { return ℜ }
The lld-linked executable crashes. ld.bfd places R_*_IRELATIVE in
.rela.dyn and the executable works.
glibc i386, x86_64, and aarch64 have logic
(glibc/sysdeps/*/dl-machine.h:elf_machine_lazy_rel) to eagerly resolve
R_*_IRELATIVE in .rel[a].plt so the lld-linked executable works.
Move R_*_IRELATIVE from .rel[a].plt to .rel[a].dyn to fix the crashes on
glibc powerpc/powerpc64. This also helps simplifying ifunc
implementation in FreeBSD rtld-elf powerpc64.
If --pack-dyn-relocs=android[+relr] is specified, the Android packed
dynamic relocation format is used for .rela.dyn. We cannot name
in.relaIplt ".rela.dyn" because the output section will have mixed
formats. This can be improved in the future.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D65651
llvm-svn: 367745
D64130 introduced a bug described in the following message:
https://reviews.llvm.org/D64130#1571560
The problem can happen with the following script:
SECTIONS {
.out : {
...
FILL(0x10101010)
*(.aaa)
...
}
The current code tries to read (0x10101010) as an expression and
does not break when meets *, what results in a script parsing error.
In this patch, I verify that FILL command's expression always wrapped in ().
And at the same time =<fillexp> expression can be both wrapped or unwrapped.
I checked it matches to bfd/gold.
Differential revision: https://reviews.llvm.org/D64476
llvm-svn: 365635
If .rela.plt is mentioned in a linker script, it might be preserved
even if it is empty. In that case, LLD created DT_JMPREL and DT_PLTGOT
dynamic tags. When the tags exist, a dynamic loader writes values into
reserved slots in .got.plt to support lazy symbol resolution.
The problem is that, in fact, the linker has not reserved that space,
and the writing may occur into the memory allocated for something else.
Differential Revision: https://reviews.llvm.org/D63869
llvm-svn: 364639
The current rule is loose: `!Sym.IsPreemptible || Expr == R_GOT`.
When the symbol is non-preemptable, this allows absolute relocation
types with smaller numbers of bits, e.g. R_X86_64_{8,16,32}. They are
disallowed by ld.bfd and gold, e.g.
ld.bfd: a.o: relocation R_X86_64_8 against `.text' can not be used when making a shared object; recompile with -fPIC
This patch:
a) Add TargetInfo::SymbolicRel to represent relocation types that resolve to a
symbol value (e.g. R_AARCH_ABS64, R_386_32, R_X86_64_64).
As a side benefit, we currently (ab)use GotRel (R_*_GLOB_DAT) to resolve
GOT slots that are link-time constants. Since we now use Target->SymbolRel
to do the job, we can remove R_*_GLOB_DAT from relocateOne() for all targets.
R_*_GLOB_DAT cannot be used as static relocation types.
b) Change the condition to `!Sym.IsPreemptible && Type != Target->SymbolicRel || Expr == R_GOT`.
Some tests are caught by the improved error checking (ld.bfd/gold also
issue errors on them). Many misuse .long where .quad should be used
instead.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63121
llvm-svn: 363059
We create several types of synthetic sections for loadable partitions, including:
- The dynamic symbol table. This allows code outside of the loadable partitions
to find entry points with dlsym.
- Creating a dynamic symbol table also requires the creation of several other
synthetic sections for the partition, such as the dynamic table and hash table
sections.
- The partition's ELF header is represented as a synthetic section in the
combined output file, and will be used by llvm-objcopy to extract partitions.
Differential Revision: https://reviews.llvm.org/D62350
llvm-svn: 362819
Fixes the remaining issue of PR41673 after D61186: with `/DISCARD/ { ... } :NONE`,
we may create an output section named `/DISCARD/`.
Note, if an input section is named `/DISCARD/`, ld.bfd discards it but
lld keeps it. It is probably not worth copying this behavior as it is unrealistic.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62768
llvm-svn: 362356
The test (the only test that checks getLinkerScriptLocation()) deleted
by r358652 can be restored by replacing R_X86_64_PLT32 with
R_X86_64_PC32, and changing -pie to -shared (preemptable). Then, the
symbol will not be a link-time constant and a -fPIC error will be
issued.
llvm-svn: 362207
For memory5.test, ld.bfd appears to ignore `. += 0x2000;`, so the test was testing
a wrong behavior. After deleting the code added in rLLD336335, we match ld.bfd and thus fix PR41357.
PR37836 (memory4.test) seems to have been fixed by another change.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62177
llvm-svn: 361228
The change broke some scenarios where debug information is still
needed, although MarkLive cannot see it, including the
Chromium/Android build. Reverting to unbreak that build.
llvm-svn: 360955
The -n (--nmagic) disables page alignment, and acts as a -Bstatic
The -N (--omagic) does what -n does but also marks the executable segment as
writeable. As page alignment is disabled headers are not allocated unless
explicit in the linker script.
To disable page alignment in LLD we choose to set the page sizes to 1 so
that any alignment based on the page size does nothing. To set the
Target->PageSize to 1 we implement -z common-page-size, which has the side
effect of allowing the user to set the value as well.
Setting the page alignments to 1 does mean that any use of
CONSTANT(MAXPAGESIZE) or CONSTANT(COMMONPAGESIZE) in a linker script will
return 1, unlike in ld.bfd. However given that -n and -N disable paging
these probably shouldn't be used in a linker script where -n or -N is in
use.
Differential Revision: https://reviews.llvm.org/D61688
llvm-svn: 360593
This improves readability and the behavior is consistent with GNU objdump.
The new test test/tools/llvm-objdump/X86/disassemble-section-name.s
checks we print newlines before and after "Disassembly of section ...:"
Differential Revision: https://reviews.llvm.org/D61127
llvm-svn: 359668
Also change some options that have different semantics (cause confusion) in llvm-readelf mode:
-s => -S
-t => --symbols
-sd => --section-data
llvm-svn: 359651
/DISCARD/ output sections were being treated as orphans. As a result, if
a /DISCARD/ output section has been assigned a PHDR, it could cause
incorrect assignment of sections to segments.
Differential Revision: https://reviews.llvm.org/D61186
llvm-svn: 359565
This is a follow up to r358979 which made findOrphanPos only consider
live sections. Unfortunately, this required change to getRankProximity,
used by findOrphanPos, was missed.
Differential Revision: https://reviews.llvm.org/D61197
llvm-svn: 359554
This is https://bugs.llvm.org//show_bug.cgi?id=38750.
If script references empty sections in LOADADDR/ADDR commands
.empty : { *(.empty ) }
.text : AT(LOADADDR (.empty) + SIZEOF (.empty)) { *(.text) }
then an empty section will be removed and LOADADDR/ADDR will evaluate to null.
It is not that user may expect from using of the generic script, what is a common case.
Differential revision: https://reviews.llvm.org/D54621
llvm-svn: 359279
This fixes an issue where a symbol only section at the start of a
PT_LOAD segment, causes incorrect alignment of the file offset for the
start of the segment which results in the output of an invalid ELF.
SHT_PROGBITS was the default output section type in the past.
Differential Revision: https://reviews.llvm.org/D60131
llvm-svn: 358981
This is https://bugs.llvm.org//show_bug.cgi?id=39857.
I added the comment with much more details to the bug page,
the short version is below.
The following script and code demonstrates the issue:
aliasto__text = __text;
SECTIONS {
.text 0x1000 : { __text = . ; *(.text) }
}
...
call aliasto__text
LLD fails with "cannot refer to absolute symbol: aliasto__text" error.
It happens because at the moment of scanning the relocations
we do not yet assign the correct/final/any section value for the symbol aliasto__text.
I made a change to Relocations.cpp to fix that.
Also, I had to remove the symbol-location.s test case completely, because now it does not
trigger any error. Since now all linker scripts symbols are resolved to constants, no
errors can be triggered at all it seems. I checked that it is consistent with the behavior
of bfd and gold (they do not trigger errors for the case from symbol-location.s), so it should
be OK. I.e. at least it is probably not the best possible, but natural behavior we obtained.
Differential revision: https://reviews.llvm.org/D55423
llvm-svn: 358652
Summary:
If the output section contains only symbol assignments, we copy flags
from the previous sections. Don't set SHF_ALLOC if NonAlloc is true.
We also have to change the type from SHT_NOBITS to SHT_PROGBITS.
In ld.bfd, bfd_elf_get_default_section_type maps non-alloctable sections to SHT_PROGBITS.
Non-alloctable SHT_NOBITS sections do not make sense.
Fixes PR38626
Differential Revision: https://reviews.llvm.org/D59986
llvm-svn: 358650
This generalizes code and also fixes the broken behavior shown in
one of our test cases for some targets, like x86-64.
The issue occurs when the forward declarations are used in the script.
One of the samples is:
SECTIONS {
foo = ADDR(.text) - ABSOLUTE(ADDR(.text));
};
In that case, we have a broken output when output target does
not use thunks. That happens because thunks creating code
(called from maybeAddThunks)
calls Script->assignAddresses() at least one more time,
what fixups the values. As a result final symbols values can
be different on AArch64 and x86, for example.
In this patch, I generalize and rename maybeAddThunks to
finalizeAddressDependentContent and now it is used and called
by all targets.
Differential revision: https://reviews.llvm.org/D55550
llvm-svn: 358646
Patch by Gabriel Smith.
The address for a section would be evaluated before the region was
switched to. Because of this, the position within the region would not
be updated. After the region is swapped to the dot would be set to the
out of date position within the region, undoing the section address
evaluation.
To fix this, the region is swapped to before the section's address is
evaluated. As part of the fallout of this, expandMemoryRegions needed
to be gated in setDot on the condition that the evaluated address is
less than the dot. This is for the case where sections are not listed
from lowest address to highest address.
Finally, a test for the case where sections are listed "out of order"
was added.
Differential Revision: https://reviews.llvm.org/D60744
llvm-svn: 358638
The typo was introduced to llvm MC in rL204769 (fixed in rL358247) and then to lld.
Also, for relocatable-many-sections.s, the size of .symtab changed at some point and the formula needs update.
llvm-svn: 358248
Patch by Robert O'Callahan.
Rust projects tend to link in all object files from all dependent
libraries and rely on --gc-sections to strip unused code and data.
Unfortunately --gc-sections doesn't currently strip any debuginfo
associated with GC'ed sections, so lld links in the full debuginfo from
all dependencies even if almost all that code has been discarded. See
https://github.com/rust-lang/rust/issues/56068 for some details.
Properly stripping debuginfo for discarded sections would be difficult,
but a simple approach that helps significantly is to mark debuginfo
sections as live only if their associated object file has at least one
live code/data section. This patch does that. In a (contrived but not
totally artificial) Rust testcase linked above, it reduces the final
binary size from 46MB to 5.1MB.
Differential Revision: https://reviews.llvm.org/D54747
llvm-svn: 358069
Summary:
Based on Peter Collingbourne's suggestion in D56828.
Before D56828: PT_LOAD(.data PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) .bss)
Old: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) .data .bss)
New: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro)) PT_LOAD(.data. .bss)
The new layout reflects the runtime memory mappings.
By having two PT_LOAD segments, we can utilize the NOBITS part of the
first PT_LOAD and save bytes for .bss.rel.ro.
.bss.rel.ro is currently small and only used by copy relocations of
symbols in read-only segments, but it can be used for other purposes in
the future, e.g. if a relro section's statically relocated data is all
zeros, we can move it to .bss.rel.ro.
Reviewers: espindola, ruiu, pcc
Reviewed By: ruiu
Subscribers: nemanjai, jvesely, nhaehnle, javed.absar, kbarton, emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58892
llvm-svn: 356226
Old: PT_LOAD(.data | PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .bss)
New: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss)
The placement of | indicates page alignment caused by PT_GNU_RELRO. The
new layout has simpler rules and saves space for many cases.
Old size: roundup(.data) + roundup(.data.rel.ro)
New size: roundup(.data.rel.ro + .bss.rel.ro) + .data
Other advantages:
* At runtime the 3 memory mappings decrease to 2.
* start(PT_TLS) = start(PT_GNU_RELRO) = start(RW PT_LOAD). This
simplifies binary manipulation tools.
GNU strip before 2.31 discards PT_GNU_RELRO if its
address is not equal to the start of its associated PT_LOAD.
This has been fixed by https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=f2731e0c374e5323ce4cdae2bcc7b7fe22da1a6f
But with this change, we will be compatible with GNU strip before 2.31
* Before, .got.plt (non-relro by default) was placed before .got (relro
by default), which made it impossible to have _GLOBAL_OFFSET_TABLE_
(start of .got.plt on x86-64) equal to the end of .got (R_GOT*_FROM_END)
(https://bugs.llvm.org/show_bug.cgi?id=36555). With the new ordering, we
can improve on this regard if we'd like to.
Reviewers: ruiu, espindola, pcc
Subscribers: emaste, arichardson, llvm-commits, joerg, jdoerfert
Differential Revision: https://reviews.llvm.org/D56828
llvm-svn: 356117
This lets us detect file size overflows when creating a 64-bit binary on
a 32-bit machine.
Differential Revision: https://reviews.llvm.org/D58840
llvm-svn: 355218
This lets us remove the special case from Writer::writeSections(), and also
fixes a bug where .eh_frame_hdr isn't necessarily written in the correct
order if a linker script moves .eh_frame and .eh_frame_hdr into the same
output section.
Differential Revision: https://reviews.llvm.org/D58795
llvm-svn: 355153
gold accepts quoted strings. binutils requires quoted strings for some
kinds of symbols, e.g.:
it accepts quoted symbols with @ in name:
$ echo 'EXTERN("__libc_start_main@@GLIBC_2.2.5")' > a.script
$ g++ a.script
/usr/lib/gcc/x86_64-redhat-linux/4.8.5/../../../../lib64/crt1.o: In function `_start':
(.text+0x20): undefined reference to `main'
collect2: error: ld returned 1 exit status
but rejects them if unquoted:
$ echo 'EXTERN(__libc_start_main@@GLIBC_2.2.5)' > a.script
$ g++ a.script
a.script: file not recognized: File format not recognized
collect2: error: ld returned 1 exit status
To maintain compatibility with existing linker scripts support quoted
strings in lld as well.
Patch by Lucian Adrian Grijincu.
Differential Revision: https://reviews.llvm.org/D57987
llvm-svn: 353756
Summary:
The following patch adds the "None" line to the section to segment mapping dump.
That line lists the sections that do not belong to any segment.
I realize that this change differs from GNU readelf which does not display the latter information.
I'd rather not add this "feature" under a command line option. I think that might introduce confusion, since users would have to
make an additional decision as to if they want to see all of the section-to-segment map or just a subset of it.
Another option is to only print the "None" line if the `--section-mapping` option is passed; however,
that might also introduce some confusion, because the section-to-segment map would be different between`--program-headers`
and the `--section-mapping` output. While the difference is just the "None" line, it seems that if we choose to display
the segment-to-section mapping, then we should always display the whole map including the sections
that do not belong to segments.
```
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .gnu.hash
03 .init_array .fini_array .dynamic
04 .dynamic
05 .note.ABI-tag
06 .eh_frame_hdr
07
08 .init_array .fini_array .dynamic .got
None .comment .symtab .strtab .shstrtab <--- THIS LINE
```
Reviewers: grimar, rupprecht, jhenderson, espindola
Reviewed By: rupprecht
Subscribers: khemant, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D57700
llvm-svn: 353217
r352366 "[llvm-objdump] - Print LMAs when dumping section headers." changed the format of
llvm-objdump output. We have to update the LLD tests.
llvm-svn: 352372
llvm-readobj currently has a bug (see PR40097) where it prints '@' at
the end of unversioned dynamic symbols. This bug will be fixed in a
separate later commit, but these tests need fixing first.
Reviewed by: ruiu, Higuoxing
Differential Revision: https://reviews.llvm.org/D56388
llvm-svn: 350614
When we report an error for symbols defined in the linker script,
we do not report the location properly.
For example:
ld.lld: error: relocation R_AARCH64_CALL26 cannot refer to absolute symbol: aliasto__text
>>> defined in <internal>
>>> referenced by rtoabs.o:(.text+0x4)
This patch fixes that.
Differential revision: https://reviews.llvm.org/D55360
llvm-svn: 349612
This was a missing piece.
We started to print LMAs and information about assignments,
but did not do that for assignments outside of section declarations yet.
The patch implements it.
Differential revision: https://reviews.llvm.org/D45314
llvm-svn: 348468
This is a part of
https://bugs.llvm.org/show_bug.cgi?id=39885
Linker script specification says:
"You can specify a file name to include sections from a particular file. You would
do this if one or more of your files contain special data that needs to be at a
particular location in memory."
LLD did not accept this syntax. The patch implements it.
Differential revision: https://reviews.llvm.org/D55324
llvm-svn: 348463
Patch from Andrew Kelley.
For context, see https://bugs.llvm.org/show_bug.cgi?id=39862
The use case is embedded / OS programming where the kernel wants
access to its own debug info via mapped dwarf info. I have a proof of
concept of this working, using this linker script snippet:
.rodata : ALIGN(4K) {
*(.rodata)
__debug_info_start = .;
KEEP(*(.debug_info))
__debug_info_end = .;
__debug_abbrev_start = .;
KEEP(*(.debug_abbrev))
__debug_abbrev_end = .;
__debug_str_start = .;
KEEP(*(.debug_str))
__debug_str_end = .;
__debug_line_start = .;
KEEP(*(.debug_line))
__debug_line_end =
.;
__debug_ranges_start
= .;
KEEP(*(.debug_ranges))
__debug_ranges_end
= .;
}
Differential revision: https://reviews.llvm.org/D55276
llvm-svn: 348291
When linking the linux kernel on ppc64le
ld.lld -EL -m elf64lppc -Bstatic --orphan-handling=warn --build-id -o
.tmp_vmlinux1 -T ./arch/powerpc/kernel/vmlinux.lds --whole-archive
built-in.a --no-whole-archive --start-group lib/lib.a --end-group
ld.lld: error: discarding .rela.plt section is not allowed
The linker script discards with the following matches
*(.glink .iplt .plt .rela* .comment)
Differential Revision: https://reviews.llvm.org/D54871
llvm-svn: 348258
At least on Linux, if a file size given to FileOutputBuffer is greater
than 2^63, it fails with "Invalid argument" error, which is not a
user-friendly error message. With this patch, lld prints out "output
file too large" instead.
llvm-svn: 348153
Summary: llvm-readobj/readelf accepts both -s and -S as aliases for --sections. However with GNU readelf only -S means --section, and -s means --symbols. I would like to make llvm-readelf more compatible.
Reviewers: MaskRay, espindola
Reviewed By: MaskRay
Subscribers: emaste, arichardson, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D54118
llvm-svn: 346164
This is https://bugs.llvm.org/show_bug.cgi?id=39493.
We crashed previously because did not handle /DISCARD/ properly
when -r was used. I think it is uncommon to use scripts with -r, though I see
nothing wrong to handle the /DISCARD/ so that we will not crash at least.
Differential revision: https://reviews.llvm.org/D53864
llvm-svn: 345819
This patch adds a support for OUTPUT_FORMAT linker script directive.
Since I'm not 100% confident with BFD names you can use in the directive
for all architectures, I added only a few in this patch. We can add
other names for other archtiectures later.
We still do not support triple-style OUTPUT_FORMAT directive, namely,
OUTPUT_FORMAT(bfdname, big, little). If you pass -EL (little endian)
or -EB (big endian) to the linker, GNU linkers pick up big or little
as a BFD name, correspondingly, so that you can use a single linker
script for bi-endian processor. I'm not sure if we really need to
support that, so I'll leave it alone for now.
Note that -m takes precedence over OUTPUT_FORAMT, but we always parse
a BFD name given to OUTPUT_FORMAT for error checking. You cannot write
an invalid name in the OUTPUT_FORMAT directive.
Differential Revision: https://reviews.llvm.org/D53495
llvm-svn: 344952
These symbols are declared early with the same value, so they otherwise
appear identical to ICF.
Differential Revision: https://reviews.llvm.org/D51376
llvm-svn: 340998
GNU ld's manual says that TARGET(foo) is basically an alias for
`--format foo` where foo is a BFD target name such as elf64-x86-64.
Unlike GNU linkers, lld doesn't allow arbitrary BFD target name for
--format. We accept only "default", "elf" or "binary". This makes
situation a bit tricky because we can't simply make TARGET an alias for
--target.
A quick code search revealed that the usage number of TARGET is very
small, and the only meaningful usage is to switch to the binary mode.
Thus, in this patch, we handle only TARGET(elf.*) and TARGET(binary).
Differential Revision: https://reviews.llvm.org/D48153
llvm-svn: 339060
Some lit tests that call llvm-ar use the 'r' flag. If the target archive
already exists and is in a corrupt state, this can cause the test to fail. We
have added 'rm -f' calls before the llvm-ar calls to increase the
robustness of the tests.
Differential revision: https://reviews.llvm.org/D49184
llvm-svn: 338705
Patch by Konstantin Schwarz!
If more than a single output section is added to a PT_LOAD header,
only the first section should set the LMAOffset of the segment.
Otherwise, we get a load-address overlap error
Differential revision: https://reviews.llvm.org/D50133
llvm-svn: 338697
Patch by Konstantin Schwarz!
If both the MemRegion and LMARegion are set for an output section in
a linker script, we should only increase the LMARegion if it is
different from the MemRegion. Otherwise, we reserve the memory twice.
Differential revision: https://reviews.llvm.org/D50065
llvm-svn: 338684
Patch by Konstantin Schwarz!
The condition to create a new phdr must also check the usage of "AT>"
linker script command, and create a new PT_LOAD header if a new LMARegion is used.
This fixes PR38307
Differential revision: https://reviews.llvm.org/D50052
llvm-svn: 338679
This is https://bugs.llvm.org//show_bug.cgi?id=37836
Previously LLD could assign to Dot or set the address
for the section with address expression but did not advance
the position in a memory region.
Patch fixes the issue.
llvm-svn: 336335
LLD removes empty output sections otherwise specified in the linker
script. Prior to this change however, if section descriptions included
ANY kind of symbol assignment, then the consequent output section would
not be removed, even if the assignment was marked with PROVIDE and not
actually triggered (i.e. the symbol was never referenced). This change
modifies the isDiscarable function to ignore such directives when
determining whether a section should be discarded, in keeping with
bfd's behaviour. Symbol assignments that do result in a symbol
definition will continue to result in a kept section (this is not
actually the same as bfd's behaviour, but it is simpler, and probably
makes more sense).
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D48771
llvm-svn: 336184
Comment in the test case says that:
## This inputs previously created a 4gb temporarily file under 32 bit
## configuration. Issue was fixed. There is no clean way to check that from here.
## This testcase added for documentation purposes.
The intention of the test was to create such huge file
in case if our code will be broken again.
And currently it documents we do not create huge outputs.
r336129 changed -o to /dev/null and broke the intentions of the test case.
llvm-svn: 336179
This is PR36768.
Linker script OVERLAYs are described in 4.6.9. Overlay Description of the spec:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/sections.html
They are used to allow output sections which have different LMAs but the same VAs
and used for embedded programming.
Currently, LLD restricts overlapping of sections and that seems to be the most desired
behaviour for defaults. My thoughts about possible approaches for PR36768 are on the bug page,
this patch implements OVERLAY keyword and allows VAs overlapping for sections that within the overlay.
Differential revision: https://reviews.llvm.org/D44780
llvm-svn: 335714
This generalizes the old heuristic placing SHT_DYNSYM SHT_DYNSTR first in the readonly SHF_ALLOC segment.
Reviewers: espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D48406
llvm-svn: 335674
Summary:
Currently when --no-rosegment is specified or a linker script with SECTIONS command is used,
.rodata (A) .text (AX) are assigned the same rank and .rodata may be placed after .text .
This increases the gap between .text and .bss and can cause pc-relative relocation overflow (e.g. gcc crtbegin.o crtbegin.S have R_X86_64_PC32 relocation from .text to .bss).
This patch makes SingleRoRx affect only segment layout, not section layout. As a consequence, .rodata will be placed before .text regardless of SingleRoRx.
Reviewers: espindola, ruiu, grimar, echristo, javed.absar
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D48405
llvm-svn: 335627
* Move `REQUIRES:` line to the top
* llvm-mc ... -o %t -> llvm-mc ... -o %t.o
* Don't check "TEXT" "DATA" columns (they are bfd-style names that do
not fit into llvm well) in llvm-objdump output
llvm-svn: 335498
If building lld without x86 support, tests that require that support should
be treated as unsupported, not errors.
Tested using:
1. cmake '-DLLVM_TARGETS_TO_BUILD=AArch64;X86'
make check-lld
=>
Expected Passes : 1406
Unsupported Tests : 287
2. cmake '-DLLVM_TARGETS_TO_BUILD=AArch64'
make check-lld
=>
Expected Passes : 410
Unsupported Tests : 1283
Patch by Joel Jones
Differential Revision: https://reviews.llvm.org/D47748
llvm-svn: 334095
Patch by Mark Kettenis.
Make ALIGN work in linker scripts used with the -r option. This works in
GNU ld (ld.bfd) and is used to generate the "random gap" object for
linking the OpenBSD kernel.
Differential Revision: https://reviews.llvm.org/D46839
llvm-svn: 332656
This CL places .dynsym and .dynstr at the beginning of SHF_ALLOC
sections. We do this to mitigate the possibility that huge .dynsym and
.dynstr sections placed between ro-data and text sections cause
relocation overflow.
Differential Revision: https://reviews.llvm.org/D45788
llvm-svn: 332374
This CL is to mitigate R_X86_64_PC32 relocation overflow problems for huge binaries that has near 4G allocated sections.
By examining those binaries, there're 2 issues contributes to the problem:
1). huge ".dynsym" and ".dynstr" stands in the way between .rodata and .text
2). _init_array_start/end are placed at 0 if no ".init_array" presents, this causes .text relocation against them become more prone to overflow.
This CL addresses 1st problem (the 2nd will be addressed in another CL.) by assigning a smaller sortrank to .dynsym and .dynstr thus they no longer stand in between.
llvm-svn: 332038
Summary: This is not technically required, but glibc unwind-dw2-fde.c classify_object_over_fdes expects there is a CIE record length 0 as a terminator.
Reviewers: ruiu, espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D46566
llvm-svn: 331708
Currently, LLD supports ASSERT as a separate command.
We support two forms now.
Assign expression-form: . = ASSERT(0x100)
(old GNU ld required it and some scripts in the wild are still using
something like . = ASSERT((_end - _text <= (512 * 1024 * 1024)), "kernel image bigger than KERNEL_IMAGE_SIZE");
Nowadays above is not a mandatory form and command-like form is commonly used:
ASSERT(<expr>, "text);
The return value of the ASSERT is Dot. That was implemented in D30171.
It looks like (2) is just a short version of (1) then.
GNU ld does *not* list ASSERT as a SECTIONS command:
https://sourceware.org/binutils/docs/ld/SECTIONS.html#SECTIONS
Given above we probably can change ASSERT to be an assignment to Dot.
That makes the rest of the code much simpler. Patch do that.
Differential revision: https://reviews.llvm.org/D45434
llvm-svn: 330814
Currently LLD sets OutSecOff in addSection for input sections.
That is a fake offset (just a rude approximation to remember the order),
used for sorting SHF_LINK_ORDER sections
(see resolveShfLinkOrder, compareByFilePosition).
There are 2 problems with such approach:
1. We currently change and reuse Size field as a value assigned. Changing size is
not good because leads to bugs. Currently, SIZEOF(.bss) for empty .bss returns 2
because we add two empty synthetic sections and increase size twice by 1.
(See PR37011: https://bugs.llvm.org/show_bug.cgi?id=37011)
2. Such approach simply does not work when --symbol-ordering-file is involved,
because processing of the ordering file might break the initial section order.
This fixes PR37011.
Differential revision: https://reviews.llvm.org/D45368
llvm-svn: 329560
Previously, "size" column is 9 characters long which is too long
at least for 32-bit (because at maximum it needs 8 columns). This
patch make it one column shorter than before. That's also a reasonable
default for 64-bit.
llvm-svn: 329317
Currently, LLD print symbol assignment commands to the map file,
but it does not do that for assignments that are outside of the section
descriptions. Such assignments can affect the layout though.
The patch implements the following:
* Teaches LLD to print symbol assignments outside of section declaration.
* Teaches LLD to print PROVIDE/HIDDEN/PROVIDE hidden commands.
In case when symbol is not provided, nothing will be printed.
Differential revision: https://reviews.llvm.org/D44894
llvm-svn: 329272
Currently, LLD prints VA, but not LMA in a map file.
It seems can be useful to print both to reveal layout
details and patch implements it.
Differential revision: https://reviews.llvm.org/D44899
llvm-svn: 329271
Added checks to test that we do not produce
output where VA of sections overruns the address
space available.
Differential revision: https://reviews.llvm.org/D43820
llvm-svn: 329063
Currently, we might have a bug with scripts like below:
.foo : ALIGN(8)
{
*(.foo)
} > ram
because do not expand the memory region when doing ALIGN.
This might result in file range overlaps. The patch fixes the issue.
Differential revision: https://reviews.llvm.org/D44730
llvm-svn: 328479
Currently when we build input sections list in linker script
we ignore all rel[a] sections. That was done to support
scripts like .rela.dyn : { *(.rela.data) } for emit relocs.
Though as a result following scripts were also silently ignored:
/DISCARD/ : { *(.rela.plt)
/DISCARD/ : { *(.rela.dyn)
and we produced output with this sections. That is not ideal.
The solution this patch suggests is simple: do not ignore synthetic
rel[a] sections. That way we can enable common discarding logic
for them and report a proper error.
Differential revision: https://reviews.llvm.org/D41640
llvm-svn: 328419
This fixes PR36367 which is about segfault when --emit-relocs is
used together with .eh_frame sections which happens because
of reordering of regular and .rel[a] sections.
Path changes loop that iterates over input sections to create
relocation target sections first.
Differential revision: https://reviews.llvm.org/D44679
llvm-svn: 328299
Patch teaches LLD to print BYTE/SHORT/LONG/QUAD and
location move commands to the map file.
Differential revision: https://reviews.llvm.org/D44004
llvm-svn: 327612
Patch do the following changes:
* Test case was converted from MIPS to x86.
* Removed part of the test checking we are able to produce a valid output.
Since we do that already in other tests, this one's intention should be
only to check we are still able to report overlaps and/or produce
broken output with overlaps.
Differential revision: https://reviews.llvm.org/D44438
llvm-svn: 327480
This follows recently started direction and sometimes
allows to fully get rid from `echo` calls.
I'll rename changed files to *.test in a follow-up.
llvm-svn: 327410
This finishes PR35877.
INSERT BEFORE used similar to INSERT AFTER,
it inserts sections before the given target section.
Differential revision: https://reviews.llvm.org/D44380
llvm-svn: 327378
This is part of PR36515.
With some linkerscripts it is possible to get file offset overlaps
and overflows. Currently LLD checks overlaps in checkNoOverlappingSections().
And also we allow broken output with --no-inhibit-exec.
Problem is that sometimes final offset of sections is completely broken
and we calculate output file size wrong and might crash.
Patch implements check to verify that there is no output section
which offset exceeds file size.
Differential revision: https://reviews.llvm.org/D43819
llvm-svn: 327376
This fixes PR36598.
LLD currently crashes when we have empty output section
with SHF_LINK_ORDER flag. This might happen if we place an
empty synthetic section in the linker script, but keep output
section alive with the use of additional symbol, for example.
The patch fixes the issue by dropping all special flags
for empty sections.
Differential revision: https://reviews.llvm.org/D44376
llvm-svn: 327374
AFTER keyword is mandatory and consume() was
used by mistake here. We accepted broken script before
this patch, testcase shows the issue.
llvm-svn: 327260
This implements INSERT AFTER in a following way:
During reading scripts it collects all insert statements.
After we done and read all files it inserts statements into script commands list.
With that:
* Rest of code does know nothing about INSERT.
* Approach is straightforward and have no visible limitations.
* It is also easy to support INSERT BEFORE (was seen in clang code once).
* Should work for PR35877 and similar cases.
Cons:
* It assumes we have "main" scripts that describes sections.
Differential revision: https://reviews.llvm.org/D43468
llvm-svn: 327003
It was raised during the review of D43819.
LLD usually use [X, Y] for reporting ranges, like below:
"relocation R_386_16 out of range: 65536 is not in [0, 65535]"
Patch changes rangeToString() to do the same.
Differential revision: https://reviews.llvm.org/D44207
llvm-svn: 326918
With fix: add missing "RUN:" prefix to test case.
Original commit message:
We do not report LMA region overflows currently.
Both GNU linkers do that. The patch implements it.
Differential revision: https://reviews.llvm.org/D44094
llvm-svn: 326895
We do not report LMA region overflows currently.
Both GNU linkers do that. The patch implements it.
Differential revision: https://reviews.llvm.org/D44094
llvm-svn: 326892
Currently, LLD segfaults when linker script attempts to discard
one of the hash sections. This patch fixes that.
Differential revision: https://reviews.llvm.org/D44012
llvm-svn: 326891
We do not expand memory region correctly for following scripts:
.foo.1 :
{
*(.foo.1)
. += 0x1000;
} > ram
Patch generalizes expanding of output sections and memory
regions in one place and fixes the issue.
Differential revision: https://reviews.llvm.org/D43999
llvm-svn: 326688
"division by zero" or "modulo by zero" are not
very informative errors and even probably confusing
as does not let to know that error is coming from linker script.
Patch adds location reporting.
Differential revision: https://reviews.llvm.org/D43934
llvm-svn: 326686
LLD can not catch a memory area overflow when using a data command.
If we have the script below:
.foo :
{
*(.foo)
BYTE(0x1)
} > ram
where BYTE overflows the ram region, we do not report it currently.
Patch fixes that.
Differential revision: https://reviews.llvm.org/D43948
llvm-svn: 326545
With the current code if the script has a PHDRS we always obey and try
to allocate a header. This can cause Min - HeaderSize to underflow.
It looks like bfd actually prints an error for this case. With this
patch we do the same.
Found while looking at pr36515.
llvm-svn: 326441
LLD crashes with broken scripts shown in testcase,
because fails to read memory regon name and accesses
MemoryRegions's element which is nullptr.
Patch fixes it.
Differential revision: https://reviews.llvm.org/D43866
llvm-svn: 326431
This is PR36515.
Currenly if we have a script like .debug_info 0 : { *(.debug_info) },
we would not remove this section and keep it in the output.
That does not work, because it is common case for
debug sections to have a zero address expression.
Patch changes behavior so that we remove only sections
that do not use symbols in its expressions.
Differential revision: https://reviews.llvm.org/D43863
llvm-svn: 326430
Summary:
This change removes large "echo" commands from the test by writing
tests themselves as linker scripts.
Reviewers: rafael
Subscribers: emaste, javed.absar, llvm-commits, arichardson
Differential Revision: https://reviews.llvm.org/D43900
llvm-svn: 326403
Some linker script test cases contain only a few lines of assembly
and a long linker script. Such tests are easier to maintain if we
write the main test file as a linkier script instead of assembly.
Differential Revision: https://reviews.llvm.org/D43887
llvm-svn: 326363
We should process symbols inside output section declarations the same way as top-level ones.
Differential Revision: https://reviews.llvm.org/D43008
llvm-svn: 326305
It should be possible to resolve undefined symbols in dynamic libraries
using symbols defined in a linker script.
Differential Revision: https://reviews.llvm.org/D43011
llvm-svn: 326176
This fixes pr36475.
I think this code can be simplified a bit, but I would like to check
in the more direct fix if we are in agreement on the direction and
then refactor.
This is not something that bfd does. The issue is not noticed in bfd
because it keeps fewer sections from the linkerscript in the output.
The reasons why it seems reasonable to do this:
- As George noticed, we would still keep the flags if the output
section had both an empty synthetic section and a regular section
- We need an heuristic to find the flags of output sections. Using the
flags of a synthetic section that would have been there seems a
reasonable heuristic.
llvm-svn: 326137
This continues direction started in D43069.
We can keep sections that are explicitly assigned to segment in script.
It helps to simplify code.
Differential revision: https://reviews.llvm.org/D43571
llvm-svn: 325887
This is for fixing PR36297.
Issue itself is that if we have SECTIONS { .bar (a+b) : { *(.stub) } };
script and no section .stub, when LLD will remove .bar, but
produce output with undefined symbols a and b.
Differential revision: https://reviews.llvm.org/D43069
llvm-svn: 325875
This responds to PR36475,
r325763 led to unexprected layout change, though
new behavior seems to be more correct.
Previously we could have following script:
.foo : { *(.foo) }
.bar : { *(.synthetic_empty) BYTE(0x11) }}
where synthetic_empty is a synthetic section which is empty and
hence removed by linker.
Before r325763 .bar would receive section flags from .synthetic_empty,
but after this revision it receives flags the same as .foo section has.
It is the same as if there would not be any synthetic_empty section in a script,
so looks reasonable and consistent behavior:
.foo : { *(.foo) }
.bar : { BYTE(0x11) }}
Patch adds testcase to document it.
Differential revision: https://reviews.llvm.org/D43632
llvm-svn: 325873
This removes script input file and inlines script into
testcase body. That is consistent with othet LS tests
and makes testcase easier to read.
llvm-svn: 325673
Currently, archive file name is missing in this message. In general,
we should avoid constructing strings in an ad-hoc manner and instead
use toString() to get consistent output strings.
Differential Revision: https://reviews.llvm.org/D43420
llvm-svn: 325416
This is PR35740 which now crashes
because we remove unused synthetic sections incorrectly.
We can keep input section description and corresponding output
section live even if it must be empty and dead.
This results in a crash because SHF_LINK_ORDER handling code
tries to access first section which is nullptr in this case.
Patch fixes the issue.
Differential revision: https://reviews.llvm.org/D42681
llvm-svn: 324463