Use this instead of `*_LIBDIR_SUFFIX`, from which it is computed.
This gets us ready for D130586, in which `*_LIBDIR_SUFFIX` is
deprecated.
Differential Revision: https://reviews.llvm.org/D132300
We held off on this before as `LLVM_LIBDIR_SUFFIX` conflicted with it.
Now we return this.
`LLVM_LIBDIR_SUFFIX` is kept as a deprecated way to set
`CMAKE_INSTALL_LIBDIR`. The other `*_LIBDIR_SUFFIX` are just removed
entirely.
I imagine this is too potentially-breaking to make LLVM 15. That's fine.
I have a more minimal version of this in the disto (NixOS) patches for
LLVM 15 (like previous versions). This more expansive version I will
test harder after the release is cut.
Reviewed By: sebastian-ne, ldionne, #libc, #libc_abi
Differential Revision: https://reviews.llvm.org/D130586
This fixes the stand-alone build configuration where LLVM_MAIN_SRC_DIR
does not exist.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124314
The LLDB website recommends using the CMake caches to build on macOS.
Although modules result in a faster build, this configuration tends to
break occasionally because it's specific to our platform. I don't expect
newcomers to be able to deal with those kind of breakages so don't
enable them by default.
Currently, LLVM's LineEditor and LLDB both use libedit, but find them in different (inconsistent) ways.
This causes issues e.g. when you are using a locally installed version of libedit, which will not be used
by clang-query, but by lldb if picked up by FindLibEdit.cmake
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D124673
This warning gives false positives about lldb's correct use of
strncpy to fill fixed length fields that don't need null termination,
in lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp, like this:
In file included from /usr/include/string.h:495,
from /usr/include/c++/9/cstring:42,
from ../include/llvm/ADT/StringRef.h:19,
from ../tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp:10:
In function ‘char* strncpy(char*, const char*, size_t)’,
inlined from ‘lldb::offset_t CreateAllImageInfosPayload(const ProcessSP&, lldb::offset_t, lldb_private::StreamString&, lldb::SaveCoreStyle)’ at ../tools/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp:6341:16:
/usr/include/x86_64-linux-gnu/bits/string_fortified.h:106:34: warning: ‘char* __builtin_strncpy(char*, const char*, long unsigned int)’ specified bound 16 equals destination size [-Wstringop-truncation]
106 | return __builtin___strncpy_chk (__dest, __src, __len, __bos (__dest));
| ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
The warning could be squelched locally with
#pragma GCC diagnostic ignored "-Wstringop-truncation"
too, but Clang also interprets those GCC pragmas, and produces
a -Wunknown-warning-option warning instead. That could be remedied
by wrapping the pragma in an "#ifndef __clang__" - but that makes
things even more messy. Instead, just silence this warning entirely.
Differential Revision: https://reviews.llvm.org/D123254
If testing for a warning option like -Wno-<foo> with GCC, GCC won't
print any diagnostic at all, leading to the options being accepted
incorrectly. However later, if compiling a file that actually prints
another warning, GCC will also print warnings about these -Wno-<foo>
options being unrecognized.
This avoids warning spam like this, for every lldb source file that
produces build warnings with GCC:
At global scope:
cc1plus: warning: unrecognized command line option ‘-Wno-vla-extension’
cc1plus: warning: unrecognized command line option ‘-Wno-deprecated-register’
This matches how such warning options are detected and added in
llvm/cmake/modules/HandleLLVMOptions.cmake, e.g. like this:
check_cxx_compiler_flag("-Wclass-memaccess" CXX_SUPPORTS_CLASS_MEMACCESS_FLAG)
append_if(CXX_SUPPORTS_CLASS_MEMACCESS_FLAG "-Wno-class-memaccess" CMAKE_CXX_FLAGS)
Differential Revision: https://reviews.llvm.org/D123202
This patch adds introduces a new kind of an lldbinit file. Unlike the
lldbinit in the home directory (useful for customizing lldb to the needs
of a particular user), or the cwd lldbinit file (useful for
project-specific settings), this file can be used to customize an entire
lldb installation to a particular environment.
The feature is enabled at build time, by setting the
LLDB_GLOBAL_INIT_DIRECTORY variable to a path to a directory which
should contain an "lldbinit" file. Lldb will then load the file at
startup, if it exists, and if automatic init loading has not been
disabled. Relative paths will be resolved (at runtime) relative to the
location of the lldb library (liblldb or LLDB.framework).
The system-wide lldbinit file will be loaded first, before any
$HOME/.lldbinit and $CWD/.lldbinit files are processed, so that those
can override any system-wide settings.
More information can be found on the RFC thread at
<https://discourse.llvm.org/t/rfc-system-wide-lldbinit/59933>.
Differential Revision: https://reviews.llvm.org/D119831
Its defaulting logic must go after `project(..)` to work correctly, but `project(..)` is often in a standalone condition making this
awkward, since the rest of the condition code may also need GNUInstallDirs.
The good thing is there are the various standalone booleans, which I had missed before. This makes splitting the conditional blocks less awkward.
Reviewed By: arichardson, phosek, beanz, ldionne, #libunwind, #libc, #libc_abi
Differential Revision: https://reviews.llvm.org/D117639
Extracted from D99484. My new plan is to start from the outside and work
inward.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D115570
Pass QUIET to find_package() in order to quiet the warning about missing
FindFBSDVMCore.cmake. FBSDVMCore always provides native CMake config
files, therefore providing a fallback module serves no purpose.
Differential Revision: https://reviews.llvm.org/D115882
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Just defensive CMake-ing. I pulled this from D115544 and D99484 which
are blocked on some lldb CI failures I don't yet understand. Hoping to land
something smaller in the meantime.
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D115566
This reverts commit 492de35df4.
I tried to apply John's changes in 8d897ec915 that were expected to
fix his patch but that didn't work unfortunately.
Reverting this again to fix the macOS bots and leave him more time to
investigate the issue.
This reverts commit 797b50d4be.
See the original D99484. @mib who noticed the original problem could not longer
reproduce it, after I tried and also failed. We are threfore hoping it went
away on its own!
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D115544
This is a new draft of D28234. I previously did the unorthodox thing of
pushing to it when I wasn't the original author, but since this version
- Uses `GNUInstallDirs`, rather than mimics it, as the original author
was hesitant to do but others requested.
- Is much broader, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I am using this patch (and many back-ports) as the basis of
https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS). It
looked like people were generally on board in D28234, but I make note of
this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM
already has some partial support for these sorts of things. For example
`LLVM_LIBDIR_SUFFIX`, or `COMPILER_RT_INSTALL_PATH`. Because it's not
quite clear yet what to do about those, we are holding off on changing
libdirs and `compiler-rt`. for this initial PR.
---
On the advice of @lebedev.ri, I am splitting this up a bit per
subproject, starting with LLVM. To allow it to be more easily reviewed. This and the subsequent patch must be landed together, as this will not build alone. But the rest can be landed on their own.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D100810
Using CMake >=3.20 results in many warnings about this new policy. This change silences the warnings by explicitly declaring use of the "OLD" behavior.
This applies D101083 to LLDBStandalone.cmake.
Differential Revision: https://reviews.llvm.org/D112497
Due to CMake cache, find_package in FindLuaAndSwig.cmake
will be ignored. This commit adds EXACT and REQUIRED flags
to it and removes find_package in Lua ScriptInterpreter.
Signed-off-by: Siger Yang <sigeryeung@gmail.com>
Reviewed By: tammela, JDevlieghere
Differential Revision: https://reviews.llvm.org/D108515
This way, we do not need to set LLVM_CMAKE_PATH to LLVM_CMAKE_DIR when (NOT LLVM_CONFIG_FOUND)
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D107717
Due to CMake cache, find_package in FindLuaAndSwig.cmake
will be ignored. This commit adds EXACT and REQUIRED flags
to it and removes find_package in Lua ScriptInterpreter.
Signed-off-by: Siger Yang <sigeryeung@gmail.com>
Reviewed By: tammela, JDevlieghere
Differential Revision: https://reviews.llvm.org/D108515
Add a LLVM_LIT_ARGS cached variable in order to make it possible
to override lit arguments when doing standalone builds. Without that,
the user variable is ignored and the default options are always used.
Based on a similar solution found in clang.
Differential Revision: https://reviews.llvm.org/D107700
This change moves to using narrow character types and libedit APIs in
Editline, because those are the same types that the rest of LLVM/LLDB
uses, and it's generally considered better practice to use UTF-8
encoded in char than it is to use wider characters. However, for
character input, the change leaves in using a wchar to enable input of
multi-byte characters.
Differential Revision: https://reviews.llvm.org/D106035
LLVM includes this header unconditionally on all platforms
(including Windows), so this define should no longer be necessary.
No behavior change.
Differential Revision: https://reviews.llvm.org/D107338
The .cpp file uses SIGNAL_POLLING_UNSUPPORTED to guard the call
to sigaction, so use it in the .h file too. (LLVM also calls
sigaction without a guard on non-Windows.)
No behavior change.
Differential Revision: https://reviews.llvm.org/D107255
Add an option to skip generating a dSYM when installing the LLDB framework on Darwin.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D103124
Bump the required SWIG version to 3. If my memory serves me well we last
bumped the required SWIG version to 2 for Python 3. At that time SWIG 3
had already been around for a while so everyone I know was already using
that.
It appears that SWIG 3 is the only version that officially supports
C++11 which we're using in the typemap. SWIG 3 was released in 2014 so I
think it's reasonable to make that the minimum required version.
https://bugs.llvm.org/show_bug.cgi?id=48685
Differential revision: https://reviews.llvm.org/D94244
Raise awareness of the fact that some versions of swig and python (and
build types) just don't mix.
One day this will be a reason to require swig>=4.0, but this version is
too hot off the press right now..
Differential Revision: https://reviews.llvm.org/D88967
ptsname is not thread-safe. ptsname_r is available on most (but not all)
systems -- use it preferentially.
In the patch I also improve the thread-safety of the ptsname fallback
path by wrapping it in a mutex. This should guarantee the safety of a
typical ptsname implementation using a single static buffer, as long as
all callers go through this function.
I also remove the error arguments, as the only way this function can
fail is if the "primary" fd is not valid. This is a programmer error as
this requirement is documented, and all callers ensure that is the case.
Differential Revision: https://reviews.llvm.org/D88728
When doing a standalone build (i.e., building just LLDB against an existing
LLVM/Clang installation), LLDB is currently unable to find any Clang resource
directory that contains all the builtin headers we need to parse real source
code. This causes several tests that actually parse source code on disk within
the expression parser to fail (most notably nearly all the import-std-module
tests).
The reason why LLDB can't find the resource directory is that we search based on
the path of the LLDB shared library path. We assumed that the Clang resource
directory is in the same prefix and has the same relative path to the LLDB
shared library (e.g., `../clang/10.0.0/include`). However for a standalone build
where the existing Clang can be anywhere on the disk, so we can't just rely on
the hardcoded relative paths to the LLDB shared library.
It seems we can either solve this by copying the resource directory to the LLDB
installation, symlinking it there or we pass the path to the Clang installation
to the code that is trying to find the resource directory. When building the
LLDB framework we currently copy the resource directory over to the framework
folder (this is why the import-std-module are not failing on the Green Dragon
standalone bot).
This patch symlinks the resource directory of Clang into the LLDB build
directory. The reason for that is simply that this is only needed when running
LLDB from the build directory. Once LLDB and Clang/LLVM are installed the
already existing logic can find the Clang resource directory by searching
relative to the LLDB shared library.
Reviewed By: kastiglione, JDevlieghere
Differential Revision: https://reviews.llvm.org/D88581
Use the append_if CMake function from HandleLLVMOptions. Since we
include this file in LLDBStandalone it should work in both for in-tree
and out-of-tree builds.
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
This removes the fallback to Python 2 and makes Python 3 the only
supported configuration. This is the first step to fully migrate to
Python 3 over the coming releases as discussed on the mailing list.
http://lists.llvm.org/pipermail/lldb-dev/2020-August/016388.html
As a reminder, for the current release the test suite and the generated
bindings should remain compatible with Python 2.
Differential revision: https://reviews.llvm.org/D85942
This patch configures LLDB.framework to build as a flat unversioned
framework on non-macOS Darwin targets, which have never supported the
macOS framework layout.
This patch also renames the 'IOS' cmake variable to 'APPLE_EMBEDDED' to
reflect the fact that lldb is built for several different kinds of embedded
Darwin targets, not just iOS.
Differential Revision: https://reviews.llvm.org/D85770
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
This quietly disabled use of zlib on Windows even when building with
-DLLVM_ENABLE_ZLIB=FORCE_ON.
> Rather than handling zlib handling manually, use find_package from CMake
> to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
> HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
> set to YES, which requires the distributor to explicitly select whether
> zlib is enabled or not. This simplifies the CMake handling and usage in
> the rest of the tooling.
>
> This is a reland of abb0075 with all followup changes and fixes that
> should address issues that were reported in PR44780.
>
> Differential Revision: https://reviews.llvm.org/D79219
This reverts commit 10b1b4a231 and follow-ups
64d99cc6ab and
f9fec0447e.