This change introduces support for zero flag ELF section groups to lld.
lld already supports COMDAT sections, which in ELF are a special type of
ELF section groups. These are generally useful to enable linker GC where
you want a group of sections to always travel together, that is to be
either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF linkers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D96636
As we don't sort local symbols, don't sort non-local symbols. This makes
non-local symbols appear in their register order, which matches GNU as. The
register order is nice in that you can write tests with interleaved CHECK
prefixes, e.g.
```
// CHECK: something about foo
.globl foo
foo:
// CHECK: something about bar
.globl bar
bar:
```
With the lexicographical order, the user needs to place lexicographical smallest
symbol first or keep CHECK prefixes in one place.
MVP object files may import at most one table, and if they do, it must
be assigned table number zero in the output, as the references to that
table are not relocatable. Ensure that this is the case, even if some
inputs define other tables.
Differential Revision: https://reviews.llvm.org/D96001
This reverts commit ac2be2b6a3.
This causes a whole much of emscripten tests to fail due to newly
undefined symbols appearing. Will investigate and look into re-landing
later.
This fixes two somewhat related issues. Firstly we were never
generating imports for weak functions (even with the `import-functions`
policy for undefined symbols). Adding a direct call to foo in the
`weak-undefined-pic.s` exposed a crash in the linker which this
change fixes.
Secondly we were failing to call `handleWeakUndefines` for the `-pie`
case which is PIC but doesn't set the undefined symbol policy to
`import-functions`. With this change `-pie` binaries will by default
call `handleWeakUndefines` which generates the undefined stub handlers
for any weakly undefined symbols.
Fixes: https://github.com/emscripten-core/emscripten/issues/13337
Differential Revision: https://reviews.llvm.org/D95914
With dynamic linking we have the current limitation that there can be
only a single active data segment (since we use __memory_base as the
load address and we can't do arithmetic in constant expresions).
This change delays the merging of active segments until a little later
in the linking process which means that the grouping of data by section,
and the magic __start/__end symbols work as expected under dynamic
linking.
Differential Revision: https://reviews.llvm.org/D96453
When parsing an object file, LLD interleaves undefined symbol resolution (which
may recursively fetch other lazy objects) with defined symbol resolution.
This may lead to surprising results, e.g. if an object file defines currently
undefined symbols and references another lazy symbol, we may interleave defined
symbols with the lazy fetch, potentially leading to the defined symbols
resolving to different files.
As an example, if both `a.a(a.o)` and `a.a(b.o)` define `foo` (not in COMDAT
group, or in different COMDAT groups) and `__profd_foo` (in COMDAT group
`__profd_foo`). LLD may resolve `foo` to `a.a(a.o)` and `__profd_foo` to
`b.a(b.o)`, i.e. different files.
```
parse ArchiveFile a.a
entry fetches a.a(a.o)
parse ObjectFile a.o
define entry
define foo
reference b
b fetches a.a(b.o)
parse ObjectFile b.o
define prevailing __profd_foo
define (ignored) non-prevailing __profd_foo
```
Assuming a set of interconnected symbols are defined all or none in several lazy
objects. Arguably making them resolve to the same file is preferable than making
them resolve to different files (some are lazy objects).
The main argument favoring the new behavior is the stability. The relative order
between a defined symbol and an undefined symbol does not change the symbol
resolution behavior. Only the relative order between two undefined symbols can
affect fetching behaviors.
---
The real world case is reduced from a Fuchsia PGO usage: `a.a(a.o)` has a
constructor within COMDAT group C5 while `a.a(b.o)` has a constructor within
COMDAT group C2. Because they use different group signatures, they are not
de-duplicated. It is not entirely whether Clang behavior is entirely conforming.
LLD selects the PGO counter section (`__profd_*`) from `a.a(b.o)` and the
constructor section from `a.a(a.o)`. The `__profd_*` is a SHF_LINK_ORDER section
linking to its own non-prevailing constructor section, so LLD errors
`sh_link points to discarded section`. This patch fixes the error.
Differential Revision: https://reviews.llvm.org/D95985
Multi-configuration generators (such as Visual Studio and Xcode) allow the specification of a build flavor at build time instead of config time, so the lit configuration files need to support that - and they do for the most part. There are several places that had one of two issues (or both!):
1) Paths had %(build_mode)s set up, but then not configured, resulting in values that would not work correctly e.g. D:/llvm-build/%(build_mode)s/bin/dsymutil.exe
2) Paths did not have %(build_mode)s set up, but instead contained $(Configuration) (which is the value for Visual Studio at configuration time, for Xcode they would have had the equivalent) e.g. "D:/llvm-build/$(Configuration)/lib".
This seems to indicate that we still have a lot of fragility in the configurations, but also that a number of these paths are never used (at least on Windows) since the errors appear to have been there a while.
This patch fixes the configurations and it has been tested with Ninja and Visual Studio to generate the correct paths. We should consider removing some of these settings altogether.
Reviewed By: JDevlieghere, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96427
This commit regroups commonalities among InputGlobal, InputEvent, and
InputTable into the new InputElement. The subclasses are defined
inline in the new InputElement.h. NFC.
Reviewed By: sbc100
Differential Revision: https://reviews.llvm.org/D94677
The code previously assumed that `getChunk` would return a non-null pointer for
every symbol, but in fact it only returns non-null pointers for DefinedFunction
and DefinedData symbols. This patch fixes the segfault by checking whether
`getChunk` returns a null for each symbol and skipping the mapping output for
any symbols for which it does.
Differential Revision: https://reviews.llvm.org/D88369
This moves the error checking until after all optional
symbols (including the section start/end symbols) have
been created.
Differential Revision: https://reviews.llvm.org/D96318
Since we emit diagnostics for undefineds in Writer::scanRelocations()
and symbols referenced by -u flags aren't referenced by any relocations,
this needs some manual code (similar to the entry point).
Differential Revision: https://reviews.llvm.org/D94371
`extern const bfd_target aarch64_elf64_le_vec;` is a variable in BFD.
It was somehow misused as an emulation by Android.
```
% aarch64-linux-gnu-ld -m aarch64_elf64_le_vec a.o
aarch64-linux-gnu-ld: unrecognised emulation mode: aarch64_elf64_le_vec
Supported emulations: aarch64linux aarch64elf aarch64elf32 aarch64elf32b aarch64elfb armelf armelfb aarch64linuxb aarch64linux32 aarch64linux32b armelfb_linux_eabi armelf_linux_eabi
```
Acked by Stephen Hines, who removed the flag from Android a while back.
Rewritting the path of the sample profile file in response.txt to be relative to the repro tar.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96193
addOptionalGlobalSymbols should be addOptionalGlobalSymbol.
Also, remove unnecessary additional argument to make the signature match
the sibling function: addOptionalDataSymbol.
Differential Revision: https://reviews.llvm.org/D96305
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.
I can add more tests to this base commit, or add them in follow-up commits.
It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.
Differential Revision: https://reviews.llvm.org/D88629
The LSDA pointers are encoded as offsets from the image base,
and arranged in one big contiguous array. Each second-level page records
the offset within that LSDA array which corresponds to the LSDA for its
first CU entry.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95810
Note that there is a triple indirection involved with
personalities and compact unwind:
1. Two bits of each CU encoding are used as an offset into the
personality array.
2. Each entry of the personality array is an offset from the image base.
The resulting address (after adding the image base) should point within the
GOT.
3. The corresponding GOT entry contains the actual pointer to the
personality function.
To further complicate things, when the personality function is in the
object file (as opposed to a dylib), its references in
`__compact_unwind` may refer to it via a section + offset relocation
instead of a symbol relocation. Since our GOT implementation can only
create entries for symbols, we have to create a synthetic symbol at the
given section offset.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D95809
GNU as does not sort local symbols. This has several advantages:
* The .symtab order is roughly the symbol occurrence order.
* The closest preceding STT_SECTION symbol is the definition of a local symbol.
* The closest preceding STT_FILE symbol is the defining file of a local symbol, if there are multiple default-version .file directives. (Not implemented in MC.)
A SHF_LINK_ORDER .gcc_except_table is similar to a .gcc_except_table in
a section group. The associated text section is responsible for retaining it.
LLD still does not support GC of non-group non-SHF_LINK_ORDER .gcc_except_table -
but that is not necessary because we can teach the compiler to set SHF_LINK_ORDER.
The Mach kernel & codesign on arm64 macOS has strict requirements for alignment and sequence of segments and sections. Dyld probably is just as picky, though kernel & codesign reject malformed Mach-O files before dyld ever has a chance.
I developed this diff by incrementally changing alignments & sequences to match the output of ld64. I stopped when my hello-world test program started working: `codesign --verify` succeded, and `execve(2)` didn't immediately fail with `errno == EBADMACHO` = `"Malformed Mach-O file"`.
Differential Revision: https://reviews.llvm.org/D94935
The current diagnostic has confused users. The new wording is adapted from one suggested by Ian Lance Taylor.
Differential Revision: https://reviews.llvm.org/D95917
binutils 2.36 introduced the new section flag SHF_GNU_RETAIN (for ELFOSABI_GNU &
ELFOSABI_FREEBSD) to mark a sections as a GC root. Several LLVM side toolchain
folks (including me) were involved in the design process of SHF_GNU_RETAIN and
were happy with this proposal.
Currently GNU ld only respects SHF_GNU_RETAIN semantics for ELFOSABI_GNU &
ELFOSABI_FREEBSD object files
(https://sourceware.org/bugzilla/show_bug.cgi?id=27282). GNU ld sets EI_OSABI
to ELFOSABI_GNU for relocatable output
(https://sourceware.org/bugzilla/show_bug.cgi?id=27091). In practice the single
value EI_OSABI is neither a good indicator for object file compatibility, nor a
useful mechanism marking used ELF extensions.
For input, we respect SHF_GNU_RETAIN semantics even for ELFOSABI_NONE object
files. This is compatible with how LLD and GNU ld handle (mildly useful) STT_GNU_IFUNC
/ (emitted by GCC, considered misfeature by some folks) STB_GNU_UNIQUE input.
(As of LLVM 12.0.0, the integrated assembler does not set ELFOSABI_GNU for
STT_GNU_IFUNC/STB_GNU_UNIQUE).
Arguably STT_GNU_IFUNC/STB_GNU_UNIQUE probably need indicators in object files
but SHF_GNU_RETAIN is more likely accepted by more OSABI platforms.
For output, we take a step further than GNU ld: we don't promote ELFOSABI_NONE
to ELFOSABI_GNU for all output.
Differential Revision: https://reviews.llvm.org/D95749
In GCC emitted .debug_info sections, R_386_GOTOFF may be used to
relocate DW_AT_GNU_call_site_value values
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98946).
R_386_GOTOFF (`S + A - GOT`) is one of the `isStaticLinkTimeConstant` relocation
type which is not PC-relative, so it can be used from non-SHF_ALLOC sections. We
current allow new relocation types as needs come. The diagnostic has caught some
bugs in the past.
Differential Revision: https://reviews.llvm.org/D95994
This extends {D92539} to work even when we are loading archive
members via `-force_load`. I uncovered this issue while trying to
force-load archives containing bitcode -- we were segfaulting.
In addition to fixing the `-force_load` case, this diff also addresses
the behavior of `-ObjC` when LTO bitcode is involved -- we need to
force-load those archive members if they contain ObjC categories.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95265
This makes our error messages more informative. But the bigger motivation is for
LTO symbol resolution, which will be in an upcoming diff. The changes in this
one are largely mechanical.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D94316
On z/OS, other error messages are not matched correctly in lit tests.
```
EDC5121I Invalid argument.
EDC5111I Permission denied.
```
This patch adds a lit substitution to fix it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95808
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.
Many cleanups
Differential Revision: https://reviews.llvm.org/D95121
The option catches incompatibility between `R_*_IRELATIVE` and DT_TEXTREL/DF_TEXTREL
before glibc 2.29. Newer glibc versions are more common nowadays and I don't
think this option has ever been used. Diagnosing this problem is also
straightforward by reading the stack trace.
Previously, CMake would find any version of Python3. However, the project
claims to require 3.6 or greater, and 3.6 features are being used.
Reviewed By: yln
Differential Revision: https://reviews.llvm.org/D95635
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
Identify dynamically exported symbols (--export-dynamic[-symbol=],
--dynamic-list=, or definitions needed to preempt shared objects) and
prevent their LTO visibility from being upgraded.
This helps avoid use of whole program devirtualization when there may
be overrides in dynamic libraries.
Differential Revision: https://reviews.llvm.org/D91583
A default version (@@) is only available for defined symbols.
Currently we use "@@" for undefined symbols too.
This patch fixes the issue and improves our test case.
Differential revision: https://reviews.llvm.org/D95219
Not sure what the difference is, but using the latter appears to cause
issues in standalone builds. See llvm.org/PR48853.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D95359
I noticed that this option was not appearing at all in the `--help`
messages for `wasm-ld` or `ld.lld`.
Add help text and make it consistent across all ports.
Differential Revision: https://reviews.llvm.org/D94925
Whilst migrating/retiring some downstream testing, I came across a test
for weak undef IE and LD TLS references, but was unable to find any
equivalent in LLD's upstream testing. There does seem to be some slight
subtle differences that could be worth testing compared to LE TLS
references, in particular that IE can be relaxed to LE in this case,
hence this change.
Differential Revision: https://reviews.llvm.org/D95124
Reviewed by: grimar, MaskRay
Just getting rid of some logspew as I test LLD under existing build
systems.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95213
If foo is referenced in any object file, bitcode file or shared object,
`__wrap_foo` should be retained as the redirection target of sym
(f96ff3c0f8).
If the object file defining foo has foo references, we cannot easily distinguish
the case from cases where foo is not referenced (we haven't scanned
relocations). Retain `__wrap_foo` because we choose to wrap sym references
regardless of whether sym is defined to keep non-LTO/LTO/relocatable links' behaviors similar
https://sourceware.org/bugzilla/show_bug.cgi?id=26358 .
If foo is defined in a shared object, `__wrap_foo` can still be omitted
(`wrap-dynamic-undef.s`).
Reviewed By: andrewng
Differential Revision: https://reviews.llvm.org/D95152
Fixes PR48523. When the linker errors with "output file too large",
one question that comes to mind is how the section sizes differ from
what they were previously. Unfortunately, this information is lost
when the linker exits without writing the output file. This change
makes it so that the error message includes the sizes of the largest
sections.
Reviewed By: MaskRay, grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D94560
This makes the following improvements.
For `SHT_GNU_versym`:
* yaml2obj: set `sh_link` to index of `.dynsym` section automatically.
For `SHT_GNU_verdef`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version definitions.
For `SHT_GNU_verneed`:
* yaml2obj: set `sh_link` to index of `.dynstr` section automatically.
* yaml2obj: set `sh_info` field automatically.
* obj2yaml: don't dump the `Info` field when its value matches the number of version dependencies.
Also, simplifies few test cases.
Differential revision: https://reviews.llvm.org/D94956
This reverts commit 5b7aef6eb4 and relands
6529d7c5a4.
The ASan error was debugged and determined to be the fault of an invalid
object file input in our test suite, which was fixed by my last change.
LLD's project policy is that it assumes input objects are valid, so I
have added a comment about this assumption to the relocation bounds
check.
The relocation offsets were incorrect. I fixed them with llvm-readobj
-codeview -codeview-subsection-bytes, which has a helpful printout of
the relocations that apply to a given symbol record with their offsets.
With this, I was able to update the relocation offsets in the yaml to
fix the line table and the S_DEFRANGE_REGISTER records.
There is still some remaining inconsistency in yaml2obj and obj2yaml
when round tripping MSVC objects, but that isn't a blocker for relanding
D94267.
Run the ObjCARCContractPass during LTO. The legacy LTO backend (under
LTO/ThinLTOCodeGenerator.cpp) already does this; this diff just adds that
behavior to the new LTO backend. Without that pass, the objc.clang.arc.use
intrinsic will get passed to the instruction selector, which doesn't know how to
handle it.
In order to test both the new and old pass managers, I've also added support for
the `--[no-]lto-legacy-pass-manager` flags.
P.S. Not sure if the ordering of the pass within the pipeline matters...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94547
In 8031785f4a the temporary object being built was moved to %t/main.o,
but not all run lines were updated to reflect this. Observe the failure
on this buildbot:
http://lab.llvm.org:8011/#/builders/5/builds/3646/steps/9/logs/stdio
It might pass locally for some people due to a stale %t.o hanging around
the build directory.
```
// a.s
jmp fcntl
// b.s
.globl fcntl
fcntl:
ret
```
`ld.lld -shared --wrap=fcntl a.o b.o` has an `R_X86_64_JUMP_SLOT` referencing
the index 0 undefined symbol, which will cause a glibc `symbol lookup error` at
runtime. This is because `__wrap_fcntl` is not in .dynsym
We use an approximation `!wrap->isUndefined()`, which doesn't set
`isUsedInRegularObj` of `__wrap_fcntl` when `fcntl` is referenced and
`__wrap_fcntl` is undefined.
Fix this by using `sym->referenced`.
This reverts commit 418df4a6ab.
This change broke emscripten tests, I believe because it started
generating 5-byte a wide table index in the call_indirect instruction.
Neither v8 nor wabt seem to be able to handle that. The spec
currently says that this is single 0x0 byte and:
"In future versions of WebAssembly, the zero byte occurring in the
encoding of the call_indirectcall_indirect instruction may be used to
index additional tables."
So we need to revisit this change. For backwards compat I guess
we need to guarantee that __indirect_function_table is always at
address zero. We could also consider making this a single-byte
relocation with and assert if have more than 127 tables (for now).
Differential Revision: https://reviews.llvm.org/D95005
Object files (and the output --relocatable) should never define
__indirect_function_table. It should always be linker synthesized
with the final output executable.
Differential Revision: https://reviews.llvm.org/D94993
R_PPC64_ADDR16_HI represents bits 16-31 of a 32-bit value
R_PPC64_ADDR16_HIGH represents bits 16-31 of a 64-bit value.
In the Linux kernel, `LOAD_REG_IMMEDIATE_SYM` defined in `arch/powerpc/include/asm/ppc_asm.h`
uses @l, @high, @higher, @highest to load the 64-bit value of a symbol.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1260
Such files (Thin-%%%%%%.tmp.o) are supposed to be deleted immediately
after they're used (either by renaming or deletion). However, we've seen
instances on Windows where this doesn't happen, probably due to the
filesystem being flaky. This is effectively a resource leak which has
prevented us from using the ThinLTO cache on Windows.
Since those temporary files are in the thinlto cache directory which we
prune periodically anyway, allowing them to be pruned too seems like a
tidy way to solve the problem.
Differential revision: https://reviews.llvm.org/D94962
Element sections will also need flags, so we shouldn't squat the
WASM_SEGMENT namespace.
Depends on D90948.
Differential Revision: https://reviews.llvm.org/D92315
This patch changes to make call_indirect explicitly refer to the
corresponding function table, residualizing TABLE_NUMBER relocs against
it.
With this change, wasm-ld now sees all references to tables, and can
link multiple tables.
Differential Revision: https://reviews.llvm.org/D90948
The commit 18aa0be36e changed the default GotBaseSymInGotPlt to true
for AArch64. This is different than binutils, where
_GLOBAL_OFFSET_TABLE_ points at the start or .got.
It seems to not intefere with current relocations used by LLVM. However
as indicated by PR#40357 [1] gcc generates R_AARCH64_LD64_GOTPAGE_LO15
for -pie (in fact it also generated the relocation for -fpic).
This change is requires to correctly handle R_AARCH64_LD64_GOTPAGE_LO15
by lld from objects generated by gcc.
[1] https://bugs.llvm.org/show_bug.cgi?id=40357
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match successfully.
```
EDC5129I No such file or directory.
```
Reviewed By: muiez
Differential Revision: https://reviews.llvm.org/D94239
This patch adds support to wasm-ld for linking multiple table references
together, in a manner similar to wasm globals. The indirect function
table is synthesized as needed.
To manage the transitional period in which the compiler doesn't yet
produce TABLE_NUMBER relocations and doesn't residualize table symbols,
the linker will detect object files which have table imports or
definitions, but no table symbols. In that case it will synthesize
symbols for the defined and imported tables.
As a change, relocatable objects are now written with table symbols,
which can cause symbol renumbering in some of the tests. If no object
file requires an indirect function table, none will be written to the
file. Note that for legacy ObjFile inputs, this test is conservative: as
we don't have relocs for each use of the indirecy function table, we
just assume that any incoming indirect function table should be
propagated to the output.
Differential Revision: https://reviews.llvm.org/D91870
This commit adds table symbol support in a partial way, while still
including some special cases for the __indirect_function_table symbol.
No change in tests.
Differential Revision: https://reviews.llvm.org/D94075
When running in `-r/--relocatable` we output relocations but the
new TLS relocations type was missing from `ObjFile::calcNewAddend`
causing this combination of inputs/flags to crash the linker.
Also avoid creating tls variables in relocatable mode. These variables
are only needed when linking final executables.
Fixes: https://github.com/emscripten-core/emscripten/issues/12934
Fixes: PR48506
Differential Revision: https://reviews.llvm.org/D93554
This is a pretty classic optimization. Instead of processing symbol
records and copying them to temporary storage, do a first pass to
measure how large the module symbol stream will be, and then copy the
data into place in the PDB file. This requires defering relocation until
much later, which accounts for most of the complexity in this patch.
This patch avoids copying the contents of all live .debug$S sections
into heap memory, which is worth about 20% of private memory usage when
making PDBs. However, this is not an unmitigated performance win,
because it can be faster to read dense, temporary, heap data than it is
to iterate symbol records in object file backed memory a second time.
Results on release chrome.dll:
peak mem: 5164.89MB -> 4072.19MB (-1,092.7MB, -21.2%)
wall-j1: 0m30.844s -> 0m32.094s (slightly slower)
wall-j3: 0m20.968s -> 0m20.312s (slightly faster)
wall-j8: 0m19.062s -> 0m17.672s (meaningfully faster)
I gathered similar numbers for a debug, component build of content.dll
in Chrome, and the performance impact of this change was in the noise.
The memory usage reduction was visible and similar.
Because of the new parallelism in the PDB commit phase, more cores makes
the new approach faster. I'm assuming that most C++ developer machines
these days are at least quad core, so I think this is a win.
Differential Revision: https://reviews.llvm.org/D94267
OutputSections.h used to close the lld::elf namespace only to
immediately open it again. This change merges both parts into
one.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D94538
Fixes PR48693: --emit-relocs keeps relocation sections. --gdb-index drops
.debug_gnu_pubnames and .debug_gnu_pubtypes but not their relocation sections.
This can cause a null pointer dereference in `getOutputSectionName`.
Also delete debug-gnu-pubnames.s which is covered by gdb-index.s
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D94354
Fixes PR48681: after LTO, lto.tmp may reference a libcall symbol not in an IR
symbol table of any bitcode file. If such a symbol is defined in an archive
matched by a --exclude-libs, we don't correctly localize the symbol.
Add another `excludeLibs` after `compileBitcodeFiles` to localize such libcall
symbols. Unfortunately we have keep the existing one for D43126.
Using VER_NDX_LOCAL is an implementation detail of `--exclude-libs`, it does not
necessarily tie to the "localize" behavior. `local:` patterns in a version
script can be omitted.
The `symbol ... has undefined version ...` error should not be exempted.
Ideally we should error as GNU ld does. https://issuetracker.google.com/issues/73020933
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D94280
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
We were mishandling the case where both `__tbss` and `__thread_data` sections were
present.
TLVP relocations should be encoded as offsets from the start of `__thread_data`,
even if the symbol is actually located in `__thread_bss`. Previously, we were
writing the offset from the start of the containing section, which doesn't
really make sense since there's no way `tlv_get_addr()` can know which section a
given `tlv$init` symbol is in at runtime.
In addition, this patch ensures that we place `__thread_data` immediately before
`__thread_bss`. This is what ld64 does, likely for performance reasons. Zerofill
sections must also be at the end of their segments; we were already doing this,
but now we ensure that `__thread_bss` occurs before `__bss`, so that it's always
possible to have it contiguous with `__thread_data`.
Fixes llvm.org/PR48657.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D94329
Before this patch, when using LLD with /DEBUG:GHASH and MSVC precomp.OBJ files, we had a bunch of:
lld-link: warning: S_[GL]PROC32ID record in blabla.obj refers to PDB item index 0x206ED1 which is not a LF[M]FUNC_ID record
This was caused by LF_FUNC_ID and LF_MFUNC_ID which didn't have correct mapping to the corresponding TPI records. The root issue was that the indexMapStorage was improperly re-assembled in UsePrecompSource::remapTpiWithGHashes.
After this patch, /DEBUG and /DEBUG:GHASH produce exactly the same debug infos in the PDB.
Differential Revision: https://reviews.llvm.org/D93732
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
This character indicates that when return pointer authentication is
being used, the function signs the return address using the B key.
Differential Revision: https://reviews.llvm.org/D93954
Add support for linking powerpcle code in LLD.
Rewrite lld/test/ELF/emulation-ppc.s to use a shared check block and add powerpcle tests.
Update tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93917
We can reduce the number of "using" declarations.
`LLVM_ELF_IMPORT_TYPES_ELFT` was extended in D93801.
Differential revision: https://reviews.llvm.org/D93856
D93491 implemented `--version` for the MachO LLD port, but asserts that the string contains something like "LLD N.N". However, this is just the cmake default for `LLD_VERSION_STRING`, and downstream users may choose a different value, e.g. a rolling distro may print "LLD trunk".
Every basic block section symbol created by -fbasic-block-sections will contain
".__part." to know that this symbol corresponds to a basic block fragment of
the function.
This patch solves two problems:
a) Like D89617, we want function symbols with suffixes to be properly qualified
so that external tools like profile aggregators know exactly what this
symbol corresponds to.
b) The current basic block naming just adds a ".N" to the symbol name where N is
some integer. This collides with how clang creates __cxx_global_var_init.N.
clang creates these symbol names to call constructor functions and basic
block symbol naming should not use the same style.
Fixed all the test cases and added an extra test for __cxx_global_var_init
breakage.
Differential Revision: https://reviews.llvm.org/D93082
We didn't have support for parsing DriverKit in our `-platform`
flag, so add that too. Also remove a bunch of unnecessary namespace
prefixes.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93741
It's an extension to ld64, but all the other ports have it, and
someone asked for it in PR43721.
While here, change the COFF help text to match the other ports.
Differential Revision: https://reviews.llvm.org/D93491
Before this, a hello world program would contain many many unnecessary
entries in its string table.
No behavior change, just makes the string table in the output smaller
and more like ld64's.
Differential Revision: https://reviews.llvm.org/D93711
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
* Migrate most of our tests to use `split-file` instead of `echo`
* Remove individual `rm -f %t/libfoo.a` commands in favor of a top-level `rm -rf %t`
* Remove unused `Inputs/libfunction.s`
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D93604
For x86-64, D33100 added a diagnostic for local-exec TLS relocations referencing a preemptible symbol.
This patch generalizes it to non-preemptible symbols (see `-Bsymbolic` in `tls.s`)
on all targets.
Local-exec TLS relocations resolve to offsets relative to a fixed point within
the static TLS block, which are only meaningful for the executable.
With this change, `clang -fpic -shared -fuse-ld=bfd a.c` on the following example will be flagged for AArch64/ARM/i386/x86-64/RISC-V
```
static __attribute__((tls_model("local-exec"))) __thread long TlsVar = 42;
long bump() { return ++TlsVar; }
```
Note, in GNU ld, at least arm, riscv and x86's ports have the similar
diagnostics, but aarch64 and ppc64 do not error.
Differential Revision: https://reviews.llvm.org/D93331
Alternative to D91611.
The TLS General Dynamic/Local Dynamic code sequences need to mark
`__tls_get_addr` with R_PPC64_TLSGD or R_PPC64_TLSLD, e.g.
```
addis r3, r2, x@got@tlsgd@ha # R_PPC64_GOT_TLSGD16_HA
addi r3, r3, x@got@tlsgd@l # R_PPC64_GOT_TLSGD16_LO
bl __tls_get_addr(x@tlsgd) # R_PPC64_TLSGD followed by R_PPC64_REL24
nop
```
However, there are two deviations form the above:
1. direct call to `__tls_get_addr`. This is essential to implement ld.so in glibc/musl/FreeBSD.
```
bl __tls_get_addr
nop
```
This is only used in a -shared link, and thus not subject to the GD/LD to IE/LE
relaxation issue below.
2. Missing R_PPC64_TLSGD/R_PPC64_TLSGD for compiler generated TLS references
According to Stefan Pintille, "In the early days of the transition from the
ELFv1 ABI that is used for big endian PowerPC Linux distributions to the ELFv2
ABI that is used for little endian PowerPC Linux distributions, there was some
ambiguity in the specification of the relocations for TLS. The GNU linker has
implemented support for correct handling of calls to __tls_get_addr with a
missing relocation. Unfortunately, we didn't notice that the IBM XL compiler
did not handle TLS according to the updated ABI until we tried linking XL
compiled libraries with LLD."
In short, LLD needs to work around the old IBM XL compiler issue.
Otherwise, if the object file is linked in -no-pie or -pie mode,
the result will be incorrect because the 4 instructions are partially
rewritten (the latter 2 are not changed).
Work around the compiler bug by disable General Dynamic/Local Dynamic to
Initial Exec/Local Exec relaxation. Note, we also disable Initial Exec
to Local Exec relaxation for implementation simplicity, though technically it can be kept.
ppc64-tls-missing-gdld.s demonstrates the updated behavior.
Reviewed By: #powerpc, stefanp, grimar
Differential Revision: https://reviews.llvm.org/D92959
Also remove iteration over ArchiveFile symbols in buildInputSectionPriorities --
that was rendered unnecessary after D92539, which included ObjFiles from
ArchiveFiles inside the `inputFiles` vector.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93569
Obj-C symbols may have spaces and colons, which our previous order file
parser would be confused by. The order file format has made the very unfortunate
choice of using colons for its delimiters, which means that we have to use
heuristics to determine if a given colon is part of a symbol or not...
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93567
The common encodings table holds only 127 entries. The encodings index for compact entries is 8 bits wide, and indexes 127..255 are stored locally to each second-level page. Prior to this diff, lld would `fatal()` if encodings overflowed the 127 limit.
This diff populates a per-second-level-page encodings table as needed. When the per-page encodings table hits its limit, we must terminate the page. If such early termination would consume fewer entries than a regular (non-compact) encoding page, then we prefer the regular format.
Caveat: one reason the common-encoding table might overflow is because of DWARF debug-info references, which are not yet implemented and will come with a later diff.
Differential Revision: https://reviews.llvm.org/D93267
We need to make sure not to emit R_X86_64_GOTPCRELX relocations for
instructions that use a REX prefix. If a REX prefix is present, we need to
instead use a R_X86_64_REX_GOTPCRELX relocation. The existing logic for
CALL64m, JMP64m, etc. already handles this by checking the HasREX parameter
and using it to determine which relocation type to use. Do this for all
instructions that can use relaxed relocations.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93561
The scope of R_TLS (TP offset relocation types (TPREL/TPOFF) used for the
local-exec TLS model) is actually narrower than its name may imply. R_TLS_NEG
is only used by Solaris R_386_TLS_LE_32.
Rename them so that they will be less confusing.
Reviewed By: grimar, psmith, rprichard
Differential Revision: https://reviews.llvm.org/D93467
Currently, `ELFFile<ELFT>::getEntry` does not check an index of
an entry. Because of that the code might read past the end of the symbol
table silently. I've added a test to `llvm-readobj\ELF\relocations.test`
to demonstrate the possible issue. Also, I've added a unit test for
this method.
After this change, `getEntry` stops reporting the section index and
reuses the `getSectionContentsAsArray` method, which already has
all the validation needed. Our related warnings now provide
more and better context sometimes.
Differential revision: https://reviews.llvm.org/D93209
Libraries linked to the lld elf library exposes a function named main.
When debugging code linked to such libraries and intending to set a
breakpoint at main, the debugger also sets breakpoint at the main
function at lld elf driver. The possible choice was to rename it to
link but that would again clash with lld::*::link. This patch tries
to consistently rename them to linkerMain.
Differential Revision: https://reviews.llvm.org/D91418
This is a refactor to pave the way for supporting paired-ADDEND for ARM64. The only paired reloc type for X86_64 is SUBTRACTOR. In a later diff, I will add SUBTRACTOR for both X86_64 and ARM64.
* s/`getImplicitAddend`/`getAddend`/ because it handles all forms of addend: implicit, explicit, paired.
* add predicate `bool isPairedReloc()`
* check range of `relInfo.r_symbolnum` is internal, unrelated to user-input, so use `assert()`, not `error()`
* minor cleanups & rearrangements in `InputFile::parseRelocations()`
Differential Revision: https://reviews.llvm.org/D90614
TREATMENT can be `error`, `warning`, `suppress`, or `dynamic_lookup`
The `dymanic_lookup` remains unimplemented for now.
Differential Revision: https://reviews.llvm.org/D93263
Live symbols should only cause the files in which they are defined
to become live.
For now this is only tested in emscripten: we're continuing
to work on reducing the test case further for an lld-style
unit test.
Differential Revision: https://reviews.llvm.org/D93472
Fixes issue where if a line section doesn't start with a line number
then the addresses at the beginning of the section don't have line numbers.
For example, for a line section like this
```
0001:00000010-00000014, line/column/addr entries = 1
7 00000013 !
```
a line number wouldn't be found for addresses from 10 to 12.
This matches behavior when using the DIA SDK.
Differential Revision: https://reviews.llvm.org/D93306
As indicated by AArch64 ELF specification, symbols with st_other
marked with STO_AARCH64_VARIANT_PCS indicates it may follow a variant
procedure call standard with different register usage convention
(for instance SVE calls).
Static linkers must preserve the marking and propagate it to the dynamic
symbol table if any reference or definition of the symbol is marked with
STO_AARCH64_VARIANT_PCS, and add a DT_AARCH64_VARIANT_PCS dynamic tag if
there are R_<CLS>_JUMP_SLOT relocations that reference that symbols.
It implements https://bugs.llvm.org/show_bug.cgi?id=48368.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93045
Note that dylibs without *any* refs will still be loaded in the usual
(strong) fashion.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93435
Weak references need not necessarily be satisfied at runtime (but they must
still be satisfied at link time). So symbol resolution still works as per usual,
but we now pass around a flag -- ultimately emitting it in the bind table -- to
indicate if a given dylib symbol is a weak reference.
ld64's behavior for symbols that have both weak and strong references is
a bit bizarre. For non-function symbols, it will emit a weak import. For
function symbols (those referenced by BRANCH relocs), it will emit a
regular import. I'm not sure what value there is in that behavior, and
since emulating it will make our implementation more complex, I've
decided to treat regular weakrefs like function symbol ones for now.
Fixes PR48511.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93369
Similar to D77853. Change ADRP to print the target address in hex, instead of the raw immediate.
The behavior is similar to GNU objdump but we also include `0x`.
Note: GNU objdump is not consistent whether or not to emit `0x` for different architectures. We try emitting 0x consistently for all targets.
```
GNU objdump: adrp x16, 10000000
Old llvm-objdump: adrp x16, #0
New llvm-objdump: adrp x16, 0x10000000
```
`adrp Xd, 0x...` assembles to a relocation referencing `*ABS*+0x10000` which is not intended. We need to use a linker or use yaml2obj.
The main test is `test/tools/llvm-objdump/ELF/AArch64/pcrel-address.yaml`
Differential Revision: https://reviews.llvm.org/D93241
Fix PR48357: If .rela.dyn appears as an output section description, its type may
be SHT_RELA (due to the empty synthetic .rela.plt) while there is no input
section. The empty .rela.dyn may be retained due to a reference in a linker
script. Don't crash.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D93367
From what I can tell, it's essentially identical to
`-sub_library`, but it doesn't match files ending in ".dylib".
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93276
Their addresses are already encoded as section-relative offsets, so
there's no need to rebase them at runtime. {D85080} has some context
on the weirdness of TLV sections.
Fixes llvm.org/PR48491.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93257
We were not setting forceWeakImport for file paths given by
`-weak_library` if we had already loaded the file. This diff fixes that
by having `loadDylib` return a cached DylibFile instance even if we have
already loaded that file.
We still avoid emitting multiple LC_LOAD_DYLIBs, but we achieve this by
making inputFiles a SetVector instead of relying on the `loadedDylibs`
cache.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93255
Follow the naming set by TI's own GCC-based toolchain.
Also, force the `osabi` field to `ELFOSABI_STANDALONE`, this matches GNU LD's output (the patching is done in `elf32_msp430_post_process_headers`).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D92931
The original tests have unneeded symbols and copy-relocation-zero-abs-addr.s
does not actually test anything.
Rewrite them and add copy-relocation-zero-addr.s instead.
Add --soname=b so that the address 0x203400 will be stable. (When linking an
executable with %t.so, the path %t.so will be recorded in the DT_NEEDED entry if
%t.so doesn't have DT_SONAME. .dynstr will have varying lengths on different
systems.)
This test may fail if there is a new changes to this tests.
The archives are not deleted so the contents from the previous test run
may affect the contents for the current run,
so this will require cleaning up the Output dir or force build of buildbot.
The fix is to put all the objects in the temporary dir that we cleanup every run,
to avoid run-2-run flaky failures.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93128
lto-object-path.ll, like stabs.s, is disabled on Windows as the path
separators make it difficult to write a test that works across
platforms.
This diff also disables implicit-dylibs.s on Windows as we seem to emit
LC_LOAD_DYLIBs in a different order on that platform. This seems like a
bug in LLD that needs to be addressed (in a future diff).
Allow exclusion/discarding of custom sections with COMDAT groups.
It piggybacks on the existing COMDAT-handling code, but applies to custom sections as well.
Differential Revision: https://reviews.llvm.org/D92950
We have two types of relocations that we apply on startup:
1. Relocations that apply to wasm globals
2. Relocations that apply to wasm memory
The first set of relocations use only the `__memory_base` import to
update a set of internal globals. Because wasm globals are thread local
these need to run on each thread. Memory relocations, like static
constructors, must only be run once.
To ensure global relocations run on all threads and because the only
depend on the immutable `__memory_base` import we can run them during
the WebAssembly start functions, instead of waiting until the
post-instantiation __wasm_call_ctors.
Differential Revision: https://reviews.llvm.org/D93066
Dylibs that are "public" -- i.e. top-level system libraries -- are considered
implicitly linked when another library re-exports them. That is, we should load
them & bind directly to their symbols instead of via their re-exporting
umbrella library. This diff implements that behavior by default, as well as an
opt-out flag.
In theory, this is just a performance optimization, but in practice it seems
that it's needed for correctness.
Fixes llvm.org/PR48395.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D93000
We need to initialize AsmParsers before any calls to `addFile`, as
bitcode files may require them. Otherwise we trigger `Assertion T &&
T->hasMCAsmParser()' failed`.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D92913
`-mcpu` and `-code-model` tests were copied from similar ones in
LLD-ELF.
There doesn't seem to be an equivalent test for `-mattr` in LLD-ELF, so
I've verified our behavior by cribbing a test from
CodeGen/X86/recip-fastmath.ll.
Reviewed By: #lld-macho, compnerd, MaskRay
Differential Revision: https://reviews.llvm.org/D92912
This was causing a crash as we were attempting to look up the
nonexistent parent OutputSection of the debug sections. We didn't detect
it earlier because there was no test for PIEs with debug info (PIEs
require us to emit rebases for X86_64_RELOC_UNSIGNED).
This diff filters out the debug sections while loading the ObjFiles. In
addition to fixing the above problem, it also lets us avoid doing
redundant work -- we no longer parse / apply relocations / attempt to
emit dyld opcodes for these sections that we don't emit.
Fixes llvm.org/PR48392.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92904
This makes it possible for STABS entries to reference the debug info
contained in the LTO-compiled output.
I'm not sure how to test the file mtime within llvm-lit -- GNU and BSD
`stat` take different command-line arguments. I've omitted the check for
now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92537
15% faster for linking Chromium's base_unittests.txt, according to ministat:
```
N Min Max Median Avg Stddev
x 10 0.650213 0.69287586 0.65793395 0.66127126 0.012365407
+ 10 0.54993701 0.59006906 0.55885506 0.56146643 0.013215349
Difference at 95.0% confidence
-0.0998048 +/- 0.0120244
-15.0929% +/- 1.81838%
(Student's t, pooled s = 0.0127974)
```
And matches what we do on the other ports.
Differential Revision: https://reviews.llvm.org/D92736
Normally we should not delete options. However, the Clang driver passes
`-plugin-opt={new,legacy}-pass-manager` instead of
`--[no-]lto-legacy-pass-manager` (`-plugin-opt=new-pass-manager` has been used
since 7.0), and it is unlikely anyone will use the `--lto-*` style options directly.
So let's rename them to be consistent with the Clang driver option names.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D92988
-DENABLE_EXPERIMENTAL_NEW_PASS_MANAGER=on configured LLD and LLVMgold.so
will use the new pass manager by default. Add an option to
use the legacy pass manager. This will also be used by the Clang driver
when -fno-new-pass-manager (D92915) / -fno-experimental-new-pass-manager is set.
Reviewed By: aeubanks, tejohnson
Differential Revision: https://reviews.llvm.org/D92916
Also error out if we find anything other than an object or bitcode file
in the archive.
Note that we were previously inserting the symbols and sections of the
unpacked ObjFile into the containing ArchiveFile. This was actually
unnecessary -- we can just insert the ObjectFile (or BitcodeFile) into
the `inputFiles` vector. This is the approach taken by LLD-ELF.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92539
Additionally:
1. Move the helper functions in InputSection.h below the definition of
`InputSection`, so the important stuff is on top
2. Remove unnecessary `explicit`
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D92453
This patch changes the archive handling to enable the semantics needed
for legacy FORTRAN common blocks and block data. When we have a COMMON
definition of a symbol and are including an archive, LLD will now
search the members for global/weak defintions to override the COMMON
symbol. The previous LLD behavior (where a member would only be included
if it satisifed some other needed symbol definition) can be re-enabled with the
option '-no-fortran-common'.
Differential Revision: https://reviews.llvm.org/D86142
Speeds up linking Chromium's base_unittests almost 10%. According to ministat:
N Min Max Median Avg Stddev
x 5 0.72193289 0.73073196 0.72560811 0.72565799 0.0032265649
+ 5 0.64069581 0.67173195 0.65876389 0.65796089 0.011349451
Difference at 95.0% confidence
-0.0676971 +/- 0.0121682
-9.32906% +/- 1.67685%
(Student's t, pooled s = 0.00834328)
Differential Revision: https://reviews.llvm.org/D92734