It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Introduced DIMacro and DIMacroFile debug info metadata in the LLVM IR to support macros.
Differential Revision: http://reviews.llvm.org/D14687
llvm-svn: 255245
This commit adds a new target-independent calling convention for C++ TLS
access functions. It aims to minimize overhead in the caller by perserving as
many registers as possible.
The target-specific implementation for X86-64 is defined as following:
Arguments are passed as for the default C calling convention
The same applies for the return value(s)
The callee preserves all GPRs - except RAX and RDI
The access function makes C-style TLS function calls in the entry and exit
block, C-style TLS functions save a lot more registers than normal calls.
The added calling convention ties into the existing implementation of the
C-style TLS functions, so we can't simply use existing calling conventions
such as preserve_mostcc.
rdar://9001553
llvm-svn: 254737
When working with tokens, it is often the case that one has instructions
which consume a token and produce a new token. Currently, we have no
mechanism to represent an initial token state.
Instead, we can create a notional "empty token" by inventing a new
constant which captures the semantics we would like. This new constant
is called ConstantTokenNone and is written textually as "token none".
Differential Revision: http://reviews.llvm.org/D14581
llvm-svn: 252811
This marker prevents optimization passes from adding 'tail' or
'musttail' markers to a call. Is is used to prevent tail call
optimization from being performed on the call.
rdar://problem/22667622
Differential Revision: http://reviews.llvm.org/D12923
llvm-svn: 252368
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
Windows EH funclets need to always return to a single parent funclet. However, it is possible for earlier optimizations to combine funclets (probably based on one funclet having an unreachable terminator) in such a way that this condition is violated.
These changes add code to the WinEHPrepare pass to detect situations where a funclet has multiple parents and clone such funclets, fixing up the unwind and catch return edges so that each copy of the funclet returns to the correct parent funclet.
Differential Revision: http://reviews.llvm.org/D13274?id=39098
llvm-svn: 252249
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
HHVM calling convention, hhvmcc, is used by HHVM JIT for
functions in translated cache. We currently support LLVM back end to
generate code for X86-64 and may support other architectures in the
future.
In HHVM calling convention any GP register could be used to pass and
return values, with the exception of R12 which is reserved for
thread-local area and is callee-saved. Other than R12, we always
pass RBX and RBP as args, which are our virtual machine's stack pointer
and frame pointer respectively.
When we enter translation cache via hhvmcc function, we expect
the stack to be aligned at 16 bytes, i.e. skewed by 8 bytes as opposed
to standard ABI alignment. This affects stack object alignment and stack
adjustments for function calls.
One extra calling convention, hhvm_ccc, is used to call C++ helpers from
HHVM's translation cache. It is almost identical to standard C calling
convention with an exception of first argument which is passed in RBP
(before we use RDI, RSI, etc.)
Differential Revision: http://reviews.llvm.org/D12681
llvm-svn: 248832
Summary:
This also adds the first set of tests for operand bundles.
The optimizer has not been audited to ensure that it does the right
thing with operand bundles.
Depends on D12456.
Reviewers: reames, chandlerc, majnemer, dexonsmith, kmod, JosephTremoulet, rnk, bogner
Subscribers: maksfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D12457
llvm-svn: 248551
This was a flawed change - it just caused the getElementType call to be
deferred until later, when we really need to remove it. Now that the IR
for GlobalAliases has been updated, the root cause is addressed that way
instead and this change is no longer needed (and in fact gets in the way
- because we want to pass the pointee type directly down further).
Follow up patches to push this through GlobalValue, bitcode format, etc,
will come along soon.
This reverts commit 236160.
llvm-svn: 247585
Summary:
This fixes bugzilla bug 24656. Fixes the case where there is a forward
reference to a global variable using an ID (i.e. @0). It does this by
passing the address space of the initializer pointer for which the
forward referenced global is used.
llvm-svn: 246788
Summary:
Fixes bug 24645. Problem appears to be that the type may be undefined
when ConvertValIDToValue is called.
Reviewers: kcc
Subscribers: llvm-commits
llvm-svn: 246779
Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
llvm-svn: 246751
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Summary:
WinEHPrepare is going to require that cleanuppad and catchpad produce values
of token type which are consumed by any cleanupret or catchret exiting the
pad. This change updates the signatures of those operators to require/enforce
that the type produced by the pads is token type and that the rets have an
appropriate argument.
The catchpad argument of a `CatchReturnInst` must be a `CatchPadInst` (and
similarly for `CleanupReturnInst`/`CleanupPadInst`). To accommodate that
restriction, this change adds a notion of an operator constraint to both
LLParser and BitcodeReader, allowing appropriate sentinels to be constructed
for forward references and appropriate error messages to be emitted for
illegal inputs.
Also add a verifier rule (noted in LangRef) that a catchpad with a catchpad
predecessor must have no other predecessors; this ensures that WinEHPrepare
will see the expected linear relationship between sibling catches on the
same try.
Lastly, remove some superfluous/vestigial casts from instruction operand
setters operating on BasicBlocks.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12108
llvm-svn: 245797
This commit extends the 'SlotMapping' structure and includes mappings for named
and numbered types in it. The LLParser is extended accordingly to fill out
those mappings at the end of module parsing.
This information is useful when we want to parse standalone constant values
at a later stage using the 'parseConstantValue' method. The constant values
can be constant expressions, which can contain references to types. In order
to parse such constant values, we have to restore the internal named and
numbered mappings for the types in LLParser, otherwise the parser will report
a parsing error. Therefore, this commit also introduces a new method called
'restoreParsingState' to LLParser, which uses the slot mappings to restore
some of its internal parsing state.
This commit is required to serialize constant value pointers in the machine
memory operands for the MIR format.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 245740
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
This reverts commit r243888, recommitting r243824.
This broke the Windows build due to a difference in the C++ standard
library implementation. Using emplace/forward_as_tuple should ensure
there's no need to copy ValIDs.
llvm-svn: 243896
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
* generate function with string attribute using API,
* dump it in LL format,
* try to parse.
Add parser support for string attributes to fix the issue.
Reviewed By: reames, hfinkel
Differential Revision: http://reviews.llvm.org/D11058
llvm-svn: 243877
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
When parsing calls to inline asm the pointee type (of the pointer type
representing the value type of the InlineAsm value) was used. To avoid
using it, use the ValID structure to ferry the FunctionType directly
through to the InlineAsm construction.
This is a bit of a workaround - alternatively the inline asm could
explicitly describe the type but that'd be verbose/redundant in the IR
and so long as the inline asm calls directly in the context of a call or
invoke, this should suffice.
llvm-svn: 243349
This commit extends the interface provided by the AsmParser library by adding a
function that allows the user to parse a standalone contant value.
This change is useful for MIR serialization, as it will allow the MIR Parser to
parse the constant values in a machine constant pool.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10280
llvm-svn: 242579
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
llvm-svn: 241901
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
The justification of this change is here: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-March/082989.html
According to the current GEP syntax, vector GEP requires that each index must be a vector with the same number of elements.
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
In this implementation I let each index be or vector or scalar. All vector indices must have the same number of elements. The scalar value will mean the splat vector value.
(1) %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
or
(2) %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
In all cases the %A type is <4 x i8*>
In the case (2) we add the same offset to all pointers.
The case (1) covers C[B[i]] case, when we have the same base C and different offsets B[i].
The documentation is updated.
http://reviews.llvm.org/D10496
llvm-svn: 241788
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
This commit moves the APSInt initialization code that's used by
the LLLexer class into a new APSInt constructor that constructs
APSInts from strings.
This change is useful for MIR Serialization, as it would allow
the MILexer class to use the same APSInt initialization as
LLexer when parsing immediate machine operands.
llvm-svn: 240436
This commit creates a new structure called 'SlotMapping' in the AsmParser library.
This structure can be passed into the public parsing APIs from the AsmParser library
in order to extract the data structures that map from slot numbers to unnamed global
values and metadata nodes.
This change is useful for MIR Serialization, as the MIR Parser has to lookup the
unnamed global values and metadata nodes by their slot numbers.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10551
llvm-svn: 240427
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
If globals can be unnamed, there is no reason for aliases to be different.
The restriction was there since the original implementation in r36435. I
can only guess it was there because of the old bison parser for the old
alias syntax.
llvm-svn: 239921
`LLVM_ENABLE_MODULES` builds sometimes fail because `Intrinsics.td`
needs to regenerate `Instrinsics.h` before anyone can include anything
from the LLVM_IR module. Represent the dependency explicitly to prevent
that.
llvm-svn: 239796
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
As a follow-up to r235955, actually support up to 65535 arguments in a
subprogram. r235955 missed assembly support, having only tested the new
limit via C++ unit tests. Code patch by Amjad Aboud.
llvm-svn: 238854
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
llvm-svn: 237949
This commit modifies the memory buffer creation in the AsmParser library so
that it requires a terminating null character. The LLLexer in the AsmParser
library checks for EOF only when it sees a null character, thus it would
be best to require it when creating a memory buffer so that the memory
buffer constructor can verify that a terminating null character is indeed
present.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun
Differential Revision: http://reviews.llvm.org/D9883
llvm-svn: 237833
Many of the callers already have the pointer type anyway, and for the
couple of callers that don't it's pretty easy to call PointerType::get
on the pointee type and address space.
This avoids LLParser from using PointerType::getElementType when parsing
GlobalAliases from IR.
llvm-svn: 236160
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Add serialization support for function metadata attachments (added in
r235783). The syntax is:
define @foo() !attach !0 {
Metadata attachments are only allowed on functions with bodies. Since
they come before the `{`, they're not really part of the body; since
they require a body, they're not really part of the header. In
`LLParser` I gave them a separate function called from `ParseDefine()`,
`ParseOptionalFunctionMetadata()`.
In bitcode, I'm using the same `METADATA_ATTACHMENT` record used by
instructions. Instruction metadata attachments are included in a
special "attachment" block at the end of a `Function`. The attachment
records are laid out like this:
InstID (KindID MetadataID)+
Note that these records always have an odd number of fields. The new
code takes advantage of this to recognize function attachments (which
don't need an instruction ID):
(KindID MetadataID)+
This means we can use the same attachment block already used for
instructions.
This is part of PR23340.
llvm-svn: 235785
Remove unused `PFS` variable and take the `Instruction` by reference.
(Not really related to PR23340, but might as well clean this up while
I'm here.)
llvm-svn: 235782
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').
llvm-svn: 235755
(reverted in r235533)
Original commit message:
"Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)"
The remapping done in ValueMapper for LTO was insufficient as the types
weren't correctly mapped (though I was using the post-mapped operands,
some of those operands might not have been mapped yet so the type
wouldn't be post-mapped yet). Instead use the pre-mapped type and
explicitly map all the types.
llvm-svn: 235651
This reverts commit r235458.
It looks like this might be breaking something LTO-ish. Looking into it
& will recommit with a fix/test case/etc once I've got more to go on.
llvm-svn: 235533
Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)
llvm-svn: 235458
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
llvm-svn: 235132
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
A few calls are left in for error checking - but I'm commenting those
out & trying to build some IR tests (aiming for Argument Promotion to
start with). When I get any of these tests passing I may add flag to
disable the checking so I can add tests that pass with the assertion in
place.
llvm-svn: 234206
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
Most of these checks were already in the `Verifier` so this is more of a
cleanup. Now almost everything is over there.
Now that require a `name:` for `MDGlobalVariable`, add a check in
`LLParser` for it.
llvm-svn: 233657
Move over some more checks from `DIDescriptor::Verify()`, and change
`LLParser` to require non-null `file:` fields in compile units.
I've ignored the comment in test/Assembler/metadata-null-operands.ll
since I disagree with it. At the time that test was written (r229960),
the debug info verifier wasn't on by default, so my comment there is in
the context of not expecting the verifier to be useful. It is now, and
besides that, since r233394 we can check when parsing textual IR whether
an operand is null that shouldn't be.
llvm-svn: 233654
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...
llvm-svn: 233604
Add operand checks for `MDLexicalBlock` and `MDLexicalBlockFile`. Like
`MDLocalVariable` and `MDLocation`, these nodes always require a scope.
There was no test bitrot to fix here (just updated the serialization
tests in test/Assembler/mdlexicalblock.ll).
llvm-svn: 233561
Change `LLParser` to require a non-null `scope:` field for both
`MDLocation` and `MDLocalVariable`. There's no need to wait for the
verifier for this check. This also allows their `::getImpl()` methods
to assert that the incoming scope is non-null.
llvm-svn: 233394
Check fields from `MDLocalVariable` and `MDGlobalVariable` and change
the accessors to downcast to the right types. `getType()` still returns
`Metadata*` since it could be an `MDString`-based reference.
Since local variables require non-null scopes, I also updated `LLParser`
to require a `scope:` field.
A number of testcases had grown bitrot and started failing with this
patch; I committed them separately in r233349. If I just broke your
out-of-tree testcases, you're probably hitting similar problems (so have
a look there).
llvm-svn: 233389
Check accessors of `MDLocation`, and change them to `cast<>` down to the
right types. Also add type-safe factory functions.
All the callers that handle broken code need to use the new versions of
the accessors (`getRawScope()` instead of `getScope()`) that still
return `Metadata*`. This is also necessary for things like
`MDNodeKeyImpl<MDLocation>` (in LLVMContextImpl.h) that need to unique
the nodes when their operands might still be forward references of the
wrong type.
In the `Value` hierarchy, consumers that handle broken code use
`getOperand()` directly. However, debug info nodes have a ton of
operands, and their order (even their existence) isn't stable yet. It's
safer and more maintainable to add an explicit "raw" accessor on the
class itself.
llvm-svn: 233322
r230877 optimized which fields are written out for `CHECK`-ability, but
apparently missed changing some of them to optional in `LLParser`.
Fixes PR22921.
llvm-svn: 232400
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
We failed to use a marking set to properly handle recursive types, which caused use
to recurse infinitely and eventually overflow the stack.
llvm-svn: 231760
Fixing this also exposed a related issue where the landingpad under construction was not
cleaned up when an error was raised, which would cause bad reference errors before the
error could actually be printed.
llvm-svn: 231634
This reverts r231200 and r231204. The second one added an explicit move
ctor for MSVC.
This change broke the clang-cl self-host due to weirdness in MSVC's
implementation of std::map::insert. Somehow we lost our rvalue ref-ness
when going through variadic placement new:
template <class _Objty, class... _Types>
void construct(_Objty *_Ptr,
_Types &&... _Args) { // construct _Objty(_Types...) at _Ptr
::new ((void *)_Ptr) _Objty(_STD forward<_Types>(_Args)...);
}
For some reason, Clang decided to call the deleted std::pair copy
constructor at this point. Needs further investigation, once I can
build.
llvm-svn: 231269
Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
llvm-svn: 231136
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
llvm-svn: 231135
While gaining practical experience hand-updating CHECK lines (for moving
the new debug info hierarchy into place), I learnt a few things about
CHECK-ability of the specialized node assembly output.
- The first part of a `CHECK:` is to identify the "right" node (this
is especially true if you intend to use the new `CHECK-SAME`
feature, since the first CHECK needs to identify the node correctly
before you can split the line).
- If there's a `tag:`, it should go first.
- If there's a `name:`, it should go next (followed by the
`linkageName:`, if any).
- If there's a `scope:`, it should follow after that.
- When a node type supports multiple DW_TAGs, but one is implied by
its name and is overwhelmingly more common, the `tag:` field is
terribly uninteresting unless it's different.
- `MDBasicType` is almost always `DW_TAG_base_type`.
- `MDTemplateValueParameter` is almost always
`DW_TAG_template_value_parameter`.
- Printing `name: ""` doesn't improve CHECK-ability, and there are far
more nodes than I realized that are commonly nameless.
- There are a few other fields that similarly aren't very interesting
when they're empty.
This commit updates the `AsmWriter` as suggested above (and makes
necessary changes in `LLParser` for round-tripping).
llvm-svn: 230877
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Parse (and write) symbolic constants in debug info `flags:` fields.
This prevents a readability (and CHECK-ability) regression with the new
debug info hierarchy.
Old (well, current) assembly, with pretty-printing:
!{!"...\\0016387", ...} ; ... [public] [rvalue reference]
Flags field without this change:
!MDDerivedType(flags: 16387, ...)
Flags field with this change:
!MDDerivedType(flags: DIFlagPublic | DIFlagRValueReference, ...)
As discussed in the review thread, this isn't a final state. Most of
these flags correspond to `DW_AT_` symbolic constants, and we might
eventually want to support arbitrary attributes in some form. However,
as it stands now, some of the flags correspond to other concepts (like
`FlagStaticMember`); until things are refactored this is the simplest
way to move forward without regressing assembly.
llvm-svn: 230111
Leverage `StringRef` inside keyword comparison macros. There's no
reason to be so low-level here, and I'm about to add another
`startswith()` use, so let's make it easy to read.
llvm-svn: 230100
`do { ... } while (false)` is standard macro etiquette for forcing
instantiations into a single statement and requiring a `;` afterwards,
making statement-like macros easier to reason about (and harder to use
incorrectly).
I'm about to modify the macros in `LexIdentifier()`. I noticed that the
`KEYWORD` macro *does* follow the rule, so I thought I'd clean up the
other macros to match (otherwise might not be worth changing, since the
benefits of this pattern are fairly irrelevant here).
llvm-svn: 230095
When trying to match the current schema with the new debug info
hierarchy, I downgraded `SizeInBits`, `AlignInBits` and `OffsetInBits`
to 32-bits (oops!). Caught this while testing my upgrade script to move
the hierarchy into place. Bump it back up to 64-bits and update tests.
llvm-svn: 229933
Follow-up to r229740, which removed `DITemplate*::getContext()` after my
upgrade script revealed that scopes are always `nullptr` for template
parameters. This is the other shoe: drop `scope:` from
`MDTemplateParameter` and its two subclasses. (Note: a bitcode upgrade
would be pointless, since the hierarchy hasn't been moved into place.)
llvm-svn: 229791
It turns out that `count: -1` is a special value indicating an empty
array, such as `Values` in:
struct T {
unsigned Count;
int Values[];
};
Handle it.
llvm-svn: 229769
Put the name before the value in assembly for `MDEnum`. While working
on the testcase upgrade script for the new hierarchy, I noticed that it
"looks nicer" to have the name first, since it lines the names up in the
(somewhat typical) case that they have a common prefix.
llvm-svn: 229747
This allows IDEs to recognize the entire set of header files for
each of the core LLVM projects.
Differential Revision: http://reviews.llvm.org/D7526
Reviewed By: Chris Bieneman
llvm-svn: 228798
Remove unnecessary restriction of 24-bits for line numbers in
`MDLocation`.
The rest of the debug info schema (with the exception of local
variables) uses 32-bits for line numbers. As I introduce the
specialized nodes, it makes sense to canonicalize on one size or the
other.
llvm-svn: 228455