Summary:
This change adds APIs to allow logging implementations to provide a
function for iterating through in-memory buffers (if they hold in-memory
buffers) and a way for users to generically deal with these buffers
in-process. These APIs are:
- __xray_log_set_buffer_iterator(...) and
__xray_log_remove_buffer_iterator(): installs and removes an
iterator function that takes an XRayBuffer and yields the next one.
- __xray_log_process_buffers(...): takes a function pointer that can
take a mode identifier (string) and an XRayBuffer to process this
data as they see fit.
The intent is to have the FDR mode implementation's buffers be
available through this `__xray_log_process_buffers(...)` API, so that
they can be streamed from memory instead of flushed to disk (useful for
getting the data to a network, or doing in-process analysis).
Basic mode logging will not support this mechanism as it's designed to
write the data mostly to disk.
Future implementations will may depend on this API as well, to allow for
programmatically working through the XRay buffers exposed to the
users in some fashion.
Reviewers: eizan, kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43495
llvm-svn: 326866
Reported on a buildbot:
Error in XFAIL list:
couldn't parse text: '| arm || aarch64 || mips'
in expression: 'freebsd | arm || aarch64 || mips'
Add || in the place of |
Fallout from D43382
llvm-svn: 325751
Summary:
The Unix subdirectory mostly allows only on Linux x86_64 but now we can target x86_64 arch in general.
Patch by David CARLIER
Reviewers: krytarowski, dberris, emaste
Reviewed By: krytarowski, dberris, emaste
Subscribers: emaste, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43382
llvm-svn: 325743
The original change broke a llvm-clang-lld-x86_64-debian setup.
This change will be investigated and reintroduced in future.
Original commit:
"Add Xray instrumentation support to FreeBSD"
https://reviews.llvm.org/D43278
llvm-svn: 325309
Summary:
- Enabling the build.
- Using assembly for the cpuid parts.
- Using thr_self FreeBSD call to get the thread id
Patch by: David CARLIER
Reviewers: dberris, rnk, krytarowski
Reviewed By: dberris, krytarowski
Subscribers: emaste, stevecheckoway, nglevin, srhines, kubamracek, dberris, mgorny, krytarowski, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D43278
llvm-svn: 325240
This gets rid of a lit warning (input './projects/compiler-rt/test/xray/Unit' contained no tests).
Differential Revision: https://reviews.llvm.org/D42597
llvm-svn: 323613
Summary:
Before this change, XRay would conservatively patch sections of the code
one sled at a time. Upon testing/profiling, this turns out to take an
inordinate amount of time and cycles. For an instrumented clang binary,
the cycles spent both in the patching/unpatching routine constituted 4%
of the cycles -- this didn't count the time spent in the kernel while
performing the mprotect calls in quick succession.
With this change, we're coalescing the number of calls to mprotect from
being linear to the number of instrumentation points, to now being a
lower constant when patching all the sleds through `__xray_patch()` or
`__xray_unpatch()`. In the case of calling `__xray_patch_function()` or
`__xray_unpatch_function()` we're now doing an mprotect call once for
all the sleds for that function (reduction of at least 2x calls to
mprotect).
Reviewers: kpw, eizan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41153
llvm-svn: 320664
Summary:
This change implements the basic mode filtering similar to what we do in
FDR mode. The implementation is slightly simpler in basic-mode filtering
because we have less details to remember, but the idea is the same. At a
high level, we do the following to decide when to filter function call
records:
- We maintain a per-thread "shadow stack" which keeps track of the
XRay instrumented functions we've encountered in a thread's
execution.
- We push an entry onto the stack when we enter an XRay instrumented
function, and note the CPU, TSC, and type of entry (whether we have
payload or not when entering).
- When we encounter an exit event, we determine whether the function
being exited is the same function we've entered recently, was
executing in the same CPU, and the delta of the recent TSC and the
recorded TSC at the top of the stack is less than the equivalent
amount of microseconds we're configured to ignore -- then we un-wind
the record offset an appropriate number of times (so we can
overwrite the records later).
We also support limiting the stack depth of the recorded functions,
so that we don't arbitrarily write deep function call stacks.
Reviewers: eizan, pelikan, kpw, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40828
llvm-svn: 319762
Summary:
This change allows for registration of multiple logging implementations
through a central mechanism in XRay, mapping an implementation to a
"mode". Modes are strings that are used as keys to determine which
implementation to install through a single API. This mechanism allows
users to choose which implementation to install either from the
environment variable 'XRAY_OPTIONS' with the `xray_mode=` flag, or
programmatically using the `__xray_select_mode(...)` function.
Here, we introduce two API functions for the XRay logging:
__xray_log_register_mode(Mode, Impl): Associates an XRayLogImpl to a
string Mode. We can only have one implementation associated with a given
Mode.
__xray_log_select_mode(Mode): Finds the associated Impl for Mode and
installs it as if by calling `__xray_set_log_impl(...)`.
Along with these changes, we also deprecate the xray_naive_log and
xray_fdr_log flags and encourage users to instead use the xray_mode
flag.
Reviewers: kpw, dblaikie, eizan, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40703
llvm-svn: 319759
Summary:
Before this patch, XRay's basic (naive mode) logging would be
initialised and installed in an adhoc manner. This patch ports the
implementation of the basic (naive mode) logging implementation to use
the common XRay framework.
We also make the following changes to reduce the variance between the
usage model of basic mode from FDR (flight data recorder) mode:
- Allow programmatic control of the size of the buffers dedicated to
per-thread records. This removes some hard-coded constants and turns
them into runtime-controllable flags and through an Options
structure.
- Default the `xray_naive_log` option to false. For now, the only way
to start basic mode is to set the environment variable, or set the
default at build-time compiler options. Because of this change we've
had to update a couple of tests relying on basic mode being always
on.
- Removed the reliance on a non-trivially destructible per-thread
resource manager. We use a similar trick done in D39526 to use
pthread_key_create() and pthread_setspecific() to ensure that the
per-thread cleanup handling is performed at thread-exit time.
We also radically simplify the code structure for basic mode, to move
most of the implementation in the `__xray` namespace.
Reviewers: pelikan, eizan, kpw
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40164
llvm-svn: 318734
Summary:
This change fixes the XRay trampolines aside from the __xray_CustomEvent
trampoline to align the stack to 16-byte boundaries before calling the
handler. Before this change we've not been explicitly aligning the stack
to 16-byte boundaries, which makes it dangerous when calling handlers
that leave the stack in a state that isn't strictly 16-byte aligned
after calling the handlers.
We add a test that makes sure we can handle these cases appropriately
after the changes, and prevents us from regressing the state moving
forward.
Fixes http://llvm.org/PR35294.
Reviewers: pelikan, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40004
llvm-svn: 318261
Summary:
This change implements the changes required in both clang and
compiler-rt to allow building XRay-instrumented binaries in Darwin. For
now we limit this to x86_64. We also start building the XRay runtime
library in compiler-rt for osx.
A caveat to this is that we don't have the tests set up and running
yet, which we'll do in a set of follow-on changes.
This patch uses the monorepo layout for the coordinated change across
multiple projects.
Reviewers: kubamracek
Subscribers: mgorny, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D39114
llvm-svn: 317875
Improves the test behaviour in the face of failure. Without this change
the fdr-single-thread.cc test may leave around artefacts of a previous
failing run since the cleanup doesn't happen if any of the intermediary
steps fail.
Non-functional change.
Subscribers: llvm-commits
llvm-svn: 316548
This is a very poorly named feature. I think originally it meant to cover linux only, but the use of it in msan
seems to be about any aarch64 platform. Anyway, this change should be NFC on everything except Android.
llvm-svn: 315389
Summary:
This change removes the dependency on using a std::deque<...> for the
storage of the buffers in the buffer queue. We instead implement a
fixed-size circular buffer that's resilient to exhaustion, and preserves
the semantics of the BufferQueue.
We're moving away from using std::deque<...> for two reasons:
- We want to remove dependencies on the STL for data structures.
- We want the data structure we use to not require re-allocation in
the normal course of operation.
The internal implementation of the buffer queue uses heap-allocated
arrays that are initialized once when the BufferQueue is created, and
re-uses slots in the buffer array as buffers are returned in order.
We also change the lock used in the implementation to a spinlock
instead of a blocking mutex. We reason that since the release operations
now take very little time in the critical section, that a spinlock would
be appropriate.
This change is related to D38073.
This change is a re-submit with the following changes:
- Keeping track of the live buffers with a counter independent of the
pointers keeping track of the extents of the circular buffer.
- Additional documentation of what the data members are meant to
represent.
Reviewers: dblaikie, kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38119
llvm-svn: 314877
Summary:
When the XRay user calls the API to finish writing the log, the thread
which is calling the API still hasn't finished and therefore won't get
its trace written. Add a test for only the main thread to check this.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38493
llvm-svn: 314875
Summary:
This change removes the dependency on using a std::deque<...> for the
storage of the buffers in the buffer queue. We instead implement a
fixed-size circular buffer that's resilient to exhaustion, and preserves
the semantics of the BufferQueue.
We're moving away from using std::deque<...> for two reasons:
- We want to remove dependencies on the STL for data structures.
- We want the data structure we use to not require re-allocation in
the normal course of operation.
The internal implementation of the buffer queue uses heap-allocated
arrays that are initialized once when the BufferQueue is created, and
re-uses slots in the buffer array as buffers are returned in order.
We also change the lock used in the implementation to a spinlock
instead of a blocking mutex. We reason that since the release operations
now take very little time in the critical section, that a spinlock would
be appropriate.
This change is related to D38073.
Reviewers: dblaikie, kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38119
llvm-svn: 314766
Summary:
Write out records about logged function call first arguments. D32840
implements the reading of this in llvm-xray.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32844
llvm-svn: 314378
Summary:
This change starts differentiating tail exits from normal exits. We also
increase the version number of the "naive" log to version 2, which will
be the starting version where these records start appearing. In FDR mode
we treat the tail exits as normal exits, and are thus subject to the
same treatment with regard to record unwriting.
Updating the version number is important to signal older builds of the
llvm-xray tool that do not deal with the tail exit records must fail
early (and that users should only use the llvm-xray tool built after
the support for tail exits to get accurate handling of these records).
Depends on D37964.
Reviewers: kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37965
llvm-svn: 313515
Thesee tests require the integrated assembler which is still in
development / testing for MIPS64. GAS doesn't understand the
section directives produced by XRay, so marking the relevant
tests as unsupported.
llvm-svn: 312628
Summary:
Before this change we seemed to not be running the unit tests, and therefore we
set out to run them. In the process of making this happen we found a divergence
between the implementation and the tests.
This includes changes to both the CMake files as well as the implementation and
headers of the XRay runtime. We've also updated documentation on the changed
functions.
Reviewers: kpw, eizan
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D37290
llvm-svn: 312202
Summary:
This change introduces versions to the instrumentation map entries we
emit for XRay instrumentaiton points. The status quo for the version is
currently set to 0 (as emitted by the LLVM back-end), and versions will
count up to 255 (unsigned char).
This change is in preparation for supporting the newer version of the
custom event sleds that will be emitted by the LLVM compiler.
While we're here, we take the opportunity to stash more registers and
align the stack properly in the __xray_CustomEvent trampoline.
Reviewers: kpw, pcc, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36816
llvm-svn: 311524
Summary:
Here we add a build with -ffunction-sections -fdata-sections and
-Wl,--gc-sections to ensure that we're still able to generate XRay
traces.
This is just adding a test, no functional changes.
Differential Revision: https://reviews.llvm.org/D36863
llvm-svn: 311145
The quiet-start.cc test currently fails for arm (and potentially other
platforms). This change limits it to x86_64-linux.
Follow-up to D35789.
llvm-svn: 309538
Summary:
Currently when the XRay runtime is linked into a binary that doesn't
have the instrumentation map, we print a warning unconditionally. This
change attempts to make this behaviour more quiet.
Reviewers: kpw, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35789
llvm-svn: 309534
Summary:
This change introduces two files that show exaples of the
always/never instrument files that can be provided to clang. We don't
add these as defaults yet in clang, which we can do later on (in a
separate change).
We also add a test that makes sure that these apply in the compiler-rt
project tests, and that changes in clang don't break the expectations in
compiler-rt.
Reviewers: pelikan, kpw
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34669
llvm-svn: 306502
This test makes sure we can handle both arg0 and arg1 handling in the
same binary, and making sure that the XRay runtime calls the correct
trampoline when handlers for both of these cases are installed.
llvm-svn: 305660
Summary:
This allows us to do more interesting things with the data available to
C++ methods, to log the `this` pointer.
Depends on D34050.
Reviewers: pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34051
llvm-svn: 305545
We only have an implementation in x86_64 that works for the
patching/unpatching and runtime support (trampolines).
Follow-up to D30630.
llvm-svn: 302873
Summary:
This change implements support for the custom event logging sleds and
intrinsics at runtime. For now it only supports handling the sleds in
x86_64, with the implementations for other architectures stubbed out to
do nothing.
NOTE: Work in progress, uploaded for exposition/exploration purposes.
Depends on D27503, D30018, and D33032.
Reviewers: echristo, javed.absar, timshen
Subscribers: mehdi_amini, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D30630
llvm-svn: 302857
Summary:
This bug is caused by the incorrect handling of return-value registers.
According to OpenPOWER 64-Bit ELF V2 ABI 2.2.5, up to 2 general-purpose
registers are going to be used for return values, and up to 8 floating
point registers or vector registers are going to be used for return
values.
Reviewers: dberris, echristo
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D33027
llvm-svn: 302691
Summary:
The test fails on PPC, because the address of a function may vary
depending on whether the "taker" shares the same ToC (roughly, in the
same "module") as the function.
Therefore the addresses of the functions taken in func-id-utils.cc may be
different from the addresses taken in xray runtime.
Change the test to be permissive on address comparison.
Reviewers: dberris, echristo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33026
llvm-svn: 302686
Follow-up on D32846 to simplify testing and not rely on FileCheck to
test boundary conditions, and instead do all the testing in code
instead.
llvm-svn: 302212
Summary:
This change allows us to provide users and implementers of XRay handlers
a means of converting XRay function id's to addresses. This, in
combination with the facilities provided in D32695, allows users to find
out:
- How many function id's there are defined in the current binary.
- Get the address of the function associated with this function id.
- Patch only specific functions according to their requirements.
While we don't directly provide symbolization support in XRay, having
the function's address lets users determine this information easily
either during runtime, or offline with tools like 'addr2line'.
Reviewers: dblaikie, echristo, pelikan
Subscribers: kpw, llvm-commits
Differential Revision: https://reviews.llvm.org/D32846
llvm-svn: 302210
Summary:
This change allows us to patch/unpatch specific functions using the
function ID. This is useful in cases where implementations might want to
do coverage-style, or more fine-grained control of which functions to
patch or un-patch at runtime.
Depends on D32693.
Reviewers: dblaikie, echristo, kpw
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32695
llvm-svn: 302112
Summary:
The thread order test fails sometimes my machine independently of standalone
build.
From testing both standalone and in-tree build, I see I configured it wrong.
The other hypothesis for an issue is that cold starts can interfere with whether
record unwriting happens. Once this happens more than once, we can naively
FileCheck on the wrong test output, which compounds the issue.
While "rm blah.* || true" will print to stderr if the glob can't expand, this is
mostly harmless and makes sure earlier failing tests don't sabotage us.
Example failure:
---
header:
version: 1
type: 1
constant-tsc: true
nonstop-tsc: true
cycle-frequency: 3800000000
records:
- { type: 0, func-id: 1, function: 'f1()', cpu: 9, thread: 21377, kind: function-enter, tsc: 2413745203147228 }
- { type: 0, func-id: 1, function: 'f1()', cpu: 9, thread: 21377, kind: function-exit, tsc: 2413745203304238 }
...
The CMAKE related change fixes the expectation that COMPILER_RT_STANDALONE_BUILD will be explicitly FALSE instead
of empty string when it is not "TRUE".
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32259
llvm-svn: 300822