New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
Generate btf_tag annotations for DISubprogram types.
A field "annotations" is introduced to DISubprogram, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DISubprogram(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106618
Generate btf_tag annotations for DIDrived types. More specifically,
clang frontend generates the btf_tag annotations for record
fields. The annotations are represented as an DINodeArray
in DebugInfo. The following example illustrate how
annotations are encoded in IR:
distinct !DIDerivedType(tag: DW_TAG_member, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106616
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Reland with additional fixes for llvm/unittests/IR/DebugTypeODRUniquingTest.cpp.
Differential Revision: https://reviews.llvm.org/D106615
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Differential Revision: https://reviews.llvm.org/D106615
Remove the assert in AssemblyWriter::printBasicBlock() and
in BasicBlock::isEntryBlock() that require blocks to have parents.
Instead, have BasicBlock::isEntryBlock() return false for unattached
blocks. This allows us to call these functions for blocks that are
not yet added to a module which is a useful debugging capability.
Committing for xiaoqing_wu
https://reviews.llvm.org/D106127k
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.
In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics. The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106319
This reverts commit 8cd35ad854.
It breaks `TestMembersAndLocalsWithSameName.py` on GreenDragon and
Mikael Holmén points out in D104827 that bitcode files created with the
patch cannot be parsed with binaries built before it.
Currently, LLParser will create a Function/GlobalVariable forward
reference based on the desired pointer type and then modify it when
it is declared. With opaque pointers, we generally do not know the
correct type to use until we see the declaration.
Solve this by creating the forward reference with a dummy type, and
then performing a RAUW with the correct Function/GlobalVariable when
it is declared. The approach is adopted from
b5b55963f6.
This results in a change to the use list order, which is why we see
test changes on some module passes that are not stable under use list
reordering.
Differential Revision: https://reviews.llvm.org/D104950
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
Currently, AsmWriter will stick uselistorder directives for global
values inside individual functions. This doesn't make a lot of sense,
and interacts badly with D104950, as use list order adjustments will
be performed while still working on a forward reference.
This patch instead always prints uselistorder directives for globals
at the module level. This isn't really compatible with the previously
used implementation approach. Rather than walking through all values
again, use the OrderMap (after stabilizing its order) to go through
all values and compute the use list shuffles for them. Classify them
per-function, or nullptr for globals.
Even independently of D104950, this seems to fix a few
verify-uselistorder failures. Conveniently, there is even a
pre-existing failing test that this fixes.
Differential Revision: https://reviews.llvm.org/D104976
- Distinct metadata needs generating in the codegen to attach correct
AAInfo on the loads/stores after lowering, merging, and other relevant
transformations.
- This patch adds 'MachhineModuleSlotTracker' to help assign slot
numbers to these newly generated unnamed metadata nodes.
- To help 'MachhineModuleSlotTracker' track machine metadata, the
original 'SlotTracker' is rebased from 'AbstractSlotTrackerStorage',
which provides basic interfaces to create/retrive metadata slots. In
addition, once LLVM IR is processsed, additional hooks are also
introduced to help collect machine metadata and assign them slot
numbers.
- Finally, if there is any such machine metadata, 'MIRPrinter' outputs
an additional 'machineMetadataNodes' field containing all the
definition of those nodes.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D103205
Previously APFloat::convertToDouble may be called only for APFloats that
were built using double semantics. Other semantics like single precision
were not allowed although corresponding numbers could be converted to
double without loss of precision. The similar restriction applied to
APFloat::convertToFloat.
With this change any APFloat that can be precisely represented by double
can be handled with convertToDouble. Behavior of convertToFloat was
updated similarly. It make the conversion operations more convenient and
adds support for formats like half and bfloat.
Differential Revision: https://reviews.llvm.org/D102671
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
The opaque pointer type is essentially just a normal pointer type with a
null pointee type.
This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.
To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.
Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html
Reviewed By: dblaikie, dexonsmith, pcc
Differential Revision: https://reviews.llvm.org/D101704
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
Negative numbers are represented using DW_OP_consts along with signed representation
of the number as the argument.
Test case IR is generated using Fortran front-end.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99273
This is needed for Fortran assumed shape arrays whose dimensions are
defined as,
- 'count' is taken from array descriptor passed as parameter by
caller, access from descriptor is defined by type DIExpression.
- 'lowerBound' is defined by callee.
The current alternate way represents using upperBound in place of
count, where upperBound is calculated in callee in a temp variable
using lowerBound and count
Representation with count (DIExpression) is not only clearer as
compared to upperBound (DIVariable) but it has another advantage that
variable count is accessed by being parameter has better chance of
survival at higher optimization level than upperBound being local
variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99335
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
This is a follow up patch to D83136 adding the align attribute to `cmpxchg`.
See also D83465 for `atomicrmw`.
Differential Revision: https://reviews.llvm.org/D87443
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
The x86_amx is used for AMX intrisics. <256 x i32> is bitcast to x86_amx when
it is used by AMX intrinsics, and x86_amx is bitcast to <256 x i32> when it
is used by load/store instruction. So amx intrinsics only operate on type x86_amx.
It can help to separate amx intrinsics from llvm IR instructions (+-*/).
Thank Craig for the idea. This patch depend on https://reviews.llvm.org/D87981.
Differential Revision: https://reviews.llvm.org/D91927
The main change is to add a 'IsDecl' field to DIModule so
that when IsDecl is set to true, the debug info entry generated
for the module would be marked as a declaration. That way, the debugger
would look up the definition of the module in the gloabl scope.
Please see the comments in llvm/test/DebugInfo/X86/dimodule.ll
for what the debug info entries would look like.
Differential Revision: https://reviews.llvm.org/D93462
Define ConstantData::PoisonValue.
Add support for poison value to LLLexer/LLParser/BitcodeReader/BitcodeWriter.
Add support for poison value to llvm-c interface.
Add support for poison value to OCaml binding.
Add m_Poison in PatternMatch.
Differential Revision: https://reviews.llvm.org/D71126
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
This patch teaches BasicBlock::print to construct an instance of
SlotTracker with the containing function.
Without this patch, we dump:
*** IR Dump After LoopInstSimplifyPass ***
; Preheader:
br label %1
; Loop:
<badref>: ; preds = %1, %0
br label %1
Note "<badref>" above. This happens because BasicBlock::print calls:
SlotTracker SlotTable(this->getModule());
Note that this constructor does not add the contents of functions to
the slot table. That is, basic blocks are left unnumbered.
This patch fixes the problem by switching to:
SlotTracker SlotTable(this->getParent());
which does add the contents of the Module and the function,
this->getParent(), to the slot table.
Differential Revision: https://reviews.llvm.org/D89567
When generating the use-list order, also consider value uses that are
operands which are wrapped in metadata; e.g. llvm.dbg.value operands.
This fixes PR36778. The test case is based on the reproducer from that
report.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D53758