Intel Inspector uses itt notifications to analyze code execution, and it
reports race conditions in dependent tasks.
This patch fixes the issue notifying Inspector on tasks dependency
synchronizations.
Differential Revision: https://reviews.llvm.org/D123042
If the operand to `sizeof` is an expression of VLA type, the operand is
still evaluated, so we should not issue a diagnostic about ignoring the
side effects in this case, as they're not actually ignored.
Fixes#48010
The flag was added when the C++20 draft did not allow for concept
caching. The final C++20 standard permits the caching, so flag is
redundant. See http://wg21.link/p2104r0.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D125014
There are many more instances of this pattern, but I chose to limit this change to .rst files (docs), anything in libcxx/include, and string literals. These have the highest chance of being seen by end users.
Reviewed By: #libc, Mordante, martong, ldionne
Differential Revision: https://reviews.llvm.org/D124708
This PR changes the `SymIntExpr` so the expression that uses a
negative value as `RHS`, for example: `x +/- (-N)`, is modeled as
`x -/+ N` instead.
This avoids producing a very large `RHS` when the symbol is cased to
an unsigned number, and as consequence makes the value more robust in
presence of casts.
Note that this change is not applied if `N` is the lowest negative
value for which negation would not be representable.
Reviewed By: steakhal
Patch By: tomasz-kaminski-sonarsource!
Differential Revision: https://reviews.llvm.org/D124658
Currently it rejects "// FOO_BAR_H" as an endif comment due to the extra space.
A user complained that this is too picky, which seems fair enough.
Differential Revision: https://reviews.llvm.org/D124955
Several helper functions specify preconditions as comments, but we never
check them. I ran across a bug report (without a reproducer) in this code,
and I thought that having these assertions in place would make it easier
to troubleshoot.
Differential Revision: https://reviews.llvm.org/D124477
This change makes sure that Flang's driver recognises LLVM IR and BC as
supported file formats. To this end, `isFortran` is extended and renamed
as `isSupportedByFlang` (the latter better reflects the new
functionality).
New tests are added to verify that the target triple is correctly
overridden by the frontend driver's default value or the value specified
with `-triple`. Strictly speaking, this is not a functionality that's
new in this patch (it was added in D124664). This patch simply enables
us to write such tests and hence I'm including them here.
Differential Revision: https://reviews.llvm.org/D124667
Prior to ordering instructions to be scheduled, the machine pipeliner
update recurrence node sets in groupRemainingNodes() by adding in a
given node set any node on the dependency path from a node set with
higher priority to the given node set. The function computePath() that
determine what constitutes a path follows artificial dependencies.
However, when ordering the nodes in the resulting node sets,
computeNodeOrder() calls ignoreDependence when looking at dependencies
which ignores artificial dependencies. This can cause a node not to be
scheduled which then causes wrong code generation and in the case of a
debug build will lead to an assert failure in generatePhis() in
ModuloScheduler.cpp.
This commit adds calls to ignoreDependence() in computePath() to not add
any node in groupRemainingNodes() that would not be ordered by
computeNodeOrder().
Reviewed By: sgundapa
Differential Revision: https://reviews.llvm.org/D124267
If clang is passed "-include foo.h", it will rewrite to "-include-pch foo.h.pch"
before passing it to cc1, if foo.h.pch exists.
Existence is checked, but validity is not. This is probably a reasonable
assumption for the compiler itself, but not for clang-based tools where the
actual compiler may be a different version of clang, or even GCC.
In the end, we lose our -include, we gain a -include-pch that can't be used,
and the file often fails to parse.
I would like to turn this off for all non-clang invocations (i.e.
createInvocationFromCommandLine), but we have explicit tests of this behavior
for libclang and I can't work out the implications of changing it.
Instead this patch:
- makes it optional in the driver, default on (no change)
- makes it optional in createInvocationFromCommandLine, default on (no change)
- changes driver to do IO through the VFS so it can be tested
- tests the option
- turns the option off in clangd where the problem was reported
Subsequent patches should make libclang opt in explicitly and flip the default
for all other tools. It's probably also time to extract an options struct
for createInvocationFromCommandLine.
Fixes https://github.com/clangd/clangd/issues/856
Fixes https://github.com/clangd/vscode-clangd/issues/324
Differential Revision: https://reviews.llvm.org/D124970
If the GPR destination register of a VSETVLI instruction is unused, we can replace it with X0. This discards the result, and thus reduces register pressure.
Since after the core insertion/lowering algorithm has run, many user written VSETVLIs will have their GPR result unused (as VTYPE/VLEN is now explicitly read instead), this kicks in for most tests which involve a vsetvli intrinsic for fixed length vectorization. (vscale vectorization generally uses the GPR result to know how far to e.g. advance pointers in a loop and these uses are not removed.) When inserting VSETVLIs to lower psuedos, we prefer the X0 form anyways.
Differential Revision: https://reviews.llvm.org/D124961
This adds a big endian run line for the AArch64 TRN tests and
regenerated the check lines, along with adding an extra MVE VMOVN case
and regenerating vector-DAGCombine.ll for easier updating.
All frontend actions that generate code (MLIR, LLVM IR/BC,
Assembly/Object Code) are re-factored as essentially one action,
`CodeGenAction`, with minor specialisations. To facilate all this,
`CodeGenAction` is extended to hold `TargetMachine` and backend action
type (MLIR vs LLVM IR vs LLVM BC vs Assembly vs Object Code).
`CodeGenAction` is no longer a pure abstract class and the
corresponding `ExecuteAction` is implemented so that it covers all use
cases. All this allows a much better code re-use.
Key functionality is extracted into some helpful hooks:
* `SetUpTargetMachine`
* `GetOutputStream`
* `EmitObjectCodeHelper`
* `EmitBCHelper`
I hope that this clarifies the overall structure. I suspect that we may
need to revisit this again as the functionality grows in complexity.
Differential Revision: https://reviews.llvm.org/D124665
Before C++20, MSVC was supporting not mentioning the template argument of the base class when initializing a class inheriting a templated base class.
So the following code compiled correctly:
```
template <class T>
class Base {
};
template <class T>
class Derived : public Base<T> {
public:
Derived() : Base() {}
};
void test() {
Derived<int> d;
}
```
See https://godbolt.org/z/Pxxe7nccx for a conformance view.
This patch adds support for such construct when in MSVC compatibility mode.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D124666
When building with debug info enabled, some load/store instructions do
not have a DebugLocation attached. When using the default IRBuilder, it
attempts to copy the DebugLocation from the insertion-point instruction.
When there's no DebugLocation, no attempt is made to add one.
This is problematic for inserted calls, where the enclosing function has
debug info but the call ends up without a DebugLocation in e.g. LTO
builds that verify that both the enclosing function and calls to
inlinable functions have debug info attached.
This issue was noticed in Linux kernel KCSAN builds with LTO and debug
info enabled:
| ...
| inlinable function call in a function with debug info must have a !dbg location
| call void @__tsan_read8(i8* %432)
| ...
To fix, ensure that all calls to the runtime have a DebugLocation
attached, where the possibility exists that the insertion-point might
not have any DebugLocation attached to it.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D124937
It's accumulating way too many optional params (see D124970)
While here, improve the name and the documentation.
Differential Revision: https://reviews.llvm.org/D124971
Further improvement of the cost model for the scalars used in
buildvectors sequences. The main functionality is outlined into
a separate function.
The cost is calculated in the following way:
1. If the Base vector is not undef vector, resizing the very first mask to
have common VF and perform action for 2 input vectors (including non-undef
Base). Other shuffle masks are combined with the resulting after the 1 stage and processed as a shuffle of 2 elements.
2. If the Base is undef vector and have only 1 shuffle mask, perform the
action only for 1 vector with the given mask, if it is not the identity
mask.
3. If > 2 masks are used, perform serie of shuffle actions for 2 vectors,
combing the masks properly between the steps.
The original implementation misses the very first analysis for the Base
vector, so the cost might too optimistic in some cases. But it improves
the cost for the insertelements which are part of the current SLP graph.
Part of D107966.
Differential Revision: https://reviews.llvm.org/D115750
Summary:
When -ffunction-sections is on, this patch makes the compiler to generate unique LSDA and EH info sections for functions on AIX by appending the function name to the section name as a suffix. This will allow the AIX linker to garbage-collect unused function.
Reviewed by: MaskRay, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D124855
The new flag -aarch64-insert-extract-base-cost can be used to
set the value of AArch64Subtarget::getVectorInsertExtractBaseCost(),
for the purposes of experimentation.
Differential Revision: https://reviews.llvm.org/D124835
Given a DPP mov like this:
%2:vgpr_32 = V_MOV_B32_e32 0, implicit $exec
...
%3:vgpr_32 = V_MOV_B32_dpp %2, %1, 1, 1, 1, 0, implicit $exec
this patch just removes a check that %2 (the "old reg") was defined in
the same BB as the DPP mov instruction. GCNDPPCombine requires that the
MIR is in SSA form so I don't understand why the BB matters.
This lets the optimization work in more real world cases when the
definition of %2 gets hoisted out of a loop.
Differential Revision: https://reviews.llvm.org/D124182
D116208 (commit 1298273e82) added FP_XSTATE_MAGIC1.
However, when building with glibc < 2.16 for backward-dependency
compatibility, it is not defined - and the build breaks.
Note: The define comes from Linux's asm/sigcontext.h but the
file uses signal.h which includes glibc's bits/sigcontext.h - which
is synced from the kernel's file but lags behind.
Solution: For backward compatility with ancient systems, define
FP_XSTATE_MAGIC1 if undefined.
//For the old systems, we were building with Linux kernel 3.19 but to support really old glibc systems, we build with a sysroot of glibc 2.12. While our kernel (and the users' kernels) have FP_XSTATE_MAGIC1, glibc 2.12 is too old. – With this patch, building the sanitizer libs works again. This showed up for us today as GCC mainline/13 has now synced the sanitizer libs.//
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D124927
Region store was not able to see through this case to the actual
initialized value of STRUCT ff. This change addresses this case by
getting the direct binding. This was found and debugged in a downstream
compiler, with debug guidance from @steakhal. A positive and negative
test case is added.
The specific case where this issue was exposed.
typedef struct {
int a:1;
int b[2];
} STRUCT;
int main() {
STRUCT ff = {0};
STRUCT* pff = &ff;
int a = ((int)pff + 1);
return a;
}
Reviewed By: steakhal, martong
Differential Revision: https://reviews.llvm.org/D124349
This extends the (X & ~Y) | Y to X | Y fold to also work if ~Y is
a truncated not (when taking into account the mask X). This is
done by exporting the infrastructure added in D124856 and reusing
it here.
I've retained the old value of AllowUndefs=false, though probably
this can be switched to true with extra test coverage.
Differential Revision: https://reviews.llvm.org/D124930
We cannot skip the freezing the condition if the unswitched branch
executes, if the condition is a chain of ANDs/ORs. For example, if if we
have an AND %c1, %c2 with %c1 == undef and %c2 == 0, there would be no
branch on undef in the original code, but a branch on undef if we
unswitch %c1.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D124603
Flang transformational runtime was previously reporting conformity
issues in a zero based fashion to describe which dimension is non
conformant. This may confuse Fortran user, especially when the message
is about a dimension other than the first one.
Differential Revision: https://reviews.llvm.org/D124941
The previous error message was technically incorrect. We do not compare equivalence of YieldOp operands and ForOp operands.
Differential Revision: https://reviews.llvm.org/D124934
Similar to how we convert logical and/or to bitwise and/or, we should
also convert umin_seq to umin based on implied poison reasoning. In
%x umin_seq %y, if %y being poison implies %x being poison, then we
don't need the sequential evaluation: Having %y contribute towards
the result will never make the result more poisonous. An important
corollary of this is that if %y is never poison, we also don't need
the sequential evaluation.
This avoids some of the regressions in D124910.
Differential Revision: https://reviews.llvm.org/D124921
Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
This is a recommit of f114f00948 with a new test
setup that doesn't involves (unsupported) corefiles.
Differential Revision: https://reviews.llvm.org/D124760
CoroCleanup is designed to lowering all the remaining coroutine
intrinsics. It is required to run after CoroSplit only. However, the
position of CoroCleanup now is far too late. The downside here is that
the unlowered coroutine instrincs might blocking other optimizations
too. So it should be a pure win to hoist the position of CoroCleanup.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D124360
If a constrained intrinsic call was replaced by some value, it was not
removed in some cases. The dangling instruction resulted in useless
instructions executed in runtime. It happened because constrained
intrinsics usually have side effect, it is used to model the interaction
with floating-point environment. In some cases it is correct behavior
but often the side effect is actually absent or can be ignored.
This change adds specific treatment of constrained intrinsics so that
their side effect can be removed if it actually absents.
Differential Revision: https://reviews.llvm.org/D118426
Image.sample instruction can be forced to return half type instead of
float when d16 flag is enabled.
This patch adds new pattern in InstCombine to detect if output of
image.sample is used later only by fptrunc which converts the type
from float to half. If pattern is detected then fptrunc and image.sample
are combined to single image.sample which is returning half type.
Later in Lowering part d16 flag is added to image sample intrinsic.
Differential Revision: https://reviews.llvm.org/D124232
This patch switches the PGO implementation on AIX from using the runtime
registration-based section tracking to the __start_SECNAME/__stop_SECNAME
based. In order to enable the recognition of __start_SECNAME/__stop_SECNAME
symbols in the AIX linker, the -bdbg:namedsects:ss needs to be used.
Reviewed By: jsji, MaskRay, davidxl
Differential Revision: https://reviews.llvm.org/D124857
Currently, STDSPQRr and STDWSPQRr are expanded only during
AVRFrameLowering - this means that if any of those instructions happen
to appear _outside_ of the typical FrameSetup / FrameDestroy
context, they wouldn't get substituted, eventually leading to a crash:
```
LLVM ERROR: Not supported instr: <MCInst XXX <MCOperand Reg:1>
<MCOperand Imm:15> <MCOperand Reg:53>>
```
This commit fixes this issue by moving expansion of those two opcodes
into AVRExpandPseudo.
This bug was originally discovered due to the Rust compiler_builtins
library. Its 0.1.37 release contained a 128-bit software
division/remainder routine that exercised this buggy branch in the code.
Reviewed By: benshi001
Differential Revision: https://reviews.llvm.org/D123528