This adds the following to the new PM based inliner in PGO mode:
* Use block frequency analysis to derive callsite's profile count and use
that to adjust thresholds of hot and cold callsites.
* Incrementally update the BFI of the caller after a callee gets inlined
into it. This incremental update is only within an invocation of the run
method - BFI is not preserved across calls to run.
Update the function entry count of the callee after inlining it into a
caller.
* I've tuned the thresholds for the hot and cold callsites using a hacked
up version of the old inliner that explicitly computes BFI on a set of
internal benchmarks and spec. Once the new PM based pipeline stabilizes
(IIRC Chandler mentioned there are known issues) I'll benchmark this
again and adjust the thresholds if required.
Inliner PGO support.
Differential revision: https://reviews.llvm.org/D28331
llvm-svn: 292666
inside of `InlineFunction`. Prior to this, call instructions are
specifically being rewritten and replaced within the inlined region,
invalidating some of the call sites.
Several of these regions are using the same technique to walk the
inlined region so this seems clearly safe up to this point.
I've also added a short circuit to the scan for call sites based on what
other code is doing.
With this, the most common crash I've found in the new inliner code is
fixed. I've turned it on for another test case that covers this
scenario.
I'll make my way through most of the other inliner test cases
just to get some easy coverage next.
llvm-svn: 290562
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.
Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
this at all. Active discussion and investigation is going on to remove
it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
Why? Because it adds what I suspect is inappropriate coupling for
little or no benefit. We will have an outer iteration system that
tracks devirtualization including that from function passes and
iterates already. We should improve that rather than approximate it
here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
reason at all.
The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.
A summary of the different things happening here:
1) Adding the usual new PM class and rigging.
2) Fixing minor underlying assumptions in the inline cost analysis or
inline logic that don't generally hold in the new PM world.
3) Adding the core pass logic which is in essence a loop over the calls
in the nodes in the call graph. This is a bit duplicated from the old
inliner, but only a handful of lines could realistically be shared.
(I tried at first, and it really didn't help anything.) All told,
this is only about 100 lines of code, and most of that is the
mechanics of wiring up analyses from the new PM world.
4) Updating the LazyCallGraph (in the new PM) based on the *newly
inlined* calls and references. This is very minimal because we cannot
form cycles.
5) When inlining removes the last use of a function, eagerly nuking the
body of the function so that any "one use remaining" inline cost
heuristics are immediately refined, and queuing these functions to be
completely deleted once inlining is complete and the call graph
updated to reflect that they have become dead.
6) After all the inlining for a particular function, updating the
LazyCallGraph and the CGSCC pass manager to reflect the
function-local simplifications that are done immediately and
internally by the inline utilties. These are the exact same
fundamental set of CG updates done by arbitrary function passes.
7) Adding a bunch of test cases to specifically target CGSCC and other
subtle aspects in the new PM world.
Many thanks to the careful review from Easwaran and Sanjoy and others!
Differential Revision: https://reviews.llvm.org/D24226
llvm-svn: 290161
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
When a function F is inlined, InlineFunction extends the debug location of every
instruction inlined from F by adding an InlinedAt.
However, if an instruction has a 'null' debug location, InlineFunction would
propagate the callsite debug location to it. This behavior existed since
revision 210459.
Revision 210459 was originally committed specifically to workaround the lack of
debug information for instructions inlined from intrinsic functions (which are
usually declared with attributes `__always_inline__, __nodebug__`).
The problem with revision 210459 is that it doesn't make any sort of distinction
between instructions inlined from a 'nodebug' function and instructions which
are inlined from a function built with debug info. This issue may lead to
incorrect stepping in the debugger.
This patch works under the assumption that a nodebug function does not have a
DISubprogram. When a function F is inlined into another function G,
InlineFunction checks if F has debug info associated with it.
For nodebug functions, the InlineFunction logic is unchanged (i.e. it would
still propagate the callsite debugloc to the inlined instructions). Otherwise,
InlineFunction no longer propagates the callsite debug location.
Differential Revision: https://reviews.llvm.org/D27462
llvm-svn: 288895
This adds support for TSan C++ exception handling, where we need to add extra calls to __tsan_func_exit when a function is exitted via exception mechanisms. Otherwise the shadow stack gets corrupted (leaked). This patch moves and enhances the existing implementation of EscapeEnumerator that finds all possible function exit points, and adds extra EH cleanup blocks where needed.
Differential Revision: https://reviews.llvm.org/D26177
llvm-svn: 286893
This would create a bitcast use which fails the verifier: swifterror values may
only be used by loads, stores, and as function arguments.
rdar://28233244
llvm-svn: 281114
Summary:
The inliner may need to determine where a given funclet unwinds to,
and this determination may depend on other funclets throughout the
funclet tree. The code that performs this walk in getUnwindDestToken
memoizes results to avoid redundant computations. In the case that
a funclet's unwind destination is derived from its ancestor, there's
code to walk back down the tree from the ancestor updating the memo
map of its descendants to record the unwind destination. This change
fixes that code to account for the case that some descendant has a
different unwind destination, which can happen if that unwind dest
is a descendant of the EHPad being queried and thus didn't determine
its unwind destination.
Also update test inline-funclets.ll, which is supposed to cover such
scenarios, to include a case that fails an assertion without this fix
but passes with it.
Fixes PR29151.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24117
llvm-svn: 280610
minimal and boring form than the old pass manager's version.
This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:
- Array alloca merging
- To support the above, bottom-up inlining with careful history
tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
Instead, it focuses on inlining functions with that attribute.
The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.
The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.
The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.
One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.
Anyways, hopefully a reasonable starting point for this pass.
Differential Revision: https://reviews.llvm.org/D23299
llvm-svn: 278896
They aren't static, and moving them to the entry block across something
else will only result in tears.
Root cause of http://crbug.com/636558.
llvm-svn: 278571
This unblocks the new PM part of River's patch in
https://reviews.llvm.org/D22706
Conveniently, this same change was needed for D21921 and so these
changes are just spun out from there.
llvm-svn: 276515
SimplifyCFG had logic to insert calls to llvm.trap for two very
particular IR patterns: stores and invokes of undef/null.
While InstCombine canonicalizes certain undefined behavior IR patterns
to stores of undef, phase ordering means that this cannot be relied upon
in general.
There are much better tools than llvm.trap: UBSan and ASan.
N.B. I could be argued into reverting this change if a clear argument as
to why it is important that we synthesize llvm.trap for stores, I'd be
hard pressed to see why it'd be useful for invokes...
llvm-svn: 273778
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
This new verifier rule lets us unambigously pick a calling convention
when creating a new declaration for
`@llvm.experimental.deoptimize.<ty>`. It is also congruent with our
lowering strategy -- since all calls to `@llvm.experimental.deoptimize`
are lowered to calls to `__llvm_deoptimize`, it is reasonable to enforce
a unique calling convention.
Some of the tests that were breaking this verifier rule have had to be
split up into different .ll files.
The inliner was violating this rule as well, and has been fixed to avoid
producing invalid IR.
llvm-svn: 269261
When inlining a call site with llvm.mem.parallel_loop_access metadata, this
metadata needs to be propagated to all cloned memory-accessing instructions.
Otherwise, inlining parts of the loop body will invalidate the annotation.
With this functionality, we now vectorize the following as expected:
void Body(int *res, int *c, int *d, int *p, int i) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
Body(res, c, d, p, i);
}
}
llvm-svn: 267949
They're not necessary (since the stack pointer is trivially restored on
return), and the way LLVM inserts the stackrestore calls breaks the
IR (we get a stackrestore between the deoptimize call and the return).
llvm-svn: 265101
They're not necessary (since the lifetime of the alloca is trivially
over due to the return), and the way LLVM inserts the lifetime.end
markers breaks the IR (we get a lifetime end marker between the
deoptimize call and the return).
llvm-svn: 265100
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
This patch provides the following infrastructure for PGO enhancements in inliner:
Enable the use of block level profile information in inliner
Incremental update of block frequency information during inlining
Update the function entry counts of callees when they get inlined into callers.
Differential Revision: http://reviews.llvm.org/D16381
llvm-svn: 262636
It is problematic if the inlinee has a cleanupret which unwinds to
caller and we inline it into a call site which doesn't unwind.
If the funclet unwinds anywhere other than to the caller,
then we will give the funclet two unwind destinations.
This will result in a verifier failure.
Seeing as how the caller wasn't an invoke (which would locally unwind)
and that the funclet cannot unwind to caller, we must conclude that an
'unwind to caller' cleanupret is dynamically unreachable.
This fixes PR26698.
Differential Revision: http://reviews.llvm.org/D17536
llvm-svn: 261656
Summary:
Funclet EH tables require that a given funclet have only one unwind
destination for exceptional exits. The verifier will therefore reject
e.g. two cleanuprets with different unwind dests for the same cleanup, or
two invokes exiting the same funclet but to different unwind dests.
Because catchswitch has no 'nounwind' variant, and because IR producers
are not *required* to annotate calls which will not unwind as 'nounwind',
it is legal to nest a call or an "unwind to caller" catchswitch within a
funclet pad that has an unwind destination other than caller; it is
undefined behavior for such a call or catchswitch to unwind.
Normally when inlining an invoke, calls in the inlined sequence are
rewritten to invokes that unwind to the callsite invoke's unwind
destination, and "unwind to caller" catchswitches in the inlined sequence
are rewritten to unwind to the callsite invoke's unwind destination.
However, if such a call or "unwind to caller" catchswitch is located in a
callee funclet that has another exceptional exit with an unwind
destination within the callee, applying the normal transformation would
give that callee funclet multiple unwind destinations for its exceptional
exits. There would be no way for EH table generation to determine which
is the "true" exit, and the verifier would reject the function
accordingly.
Add logic to the inliner to detect these cases and leave such calls and
"unwind to caller" catchswitches as calls and "unwind to caller"
catchswitches in the inlined sequence.
This fixes PR26147.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: alexcrichton, llvm-commits
Differential Revision: http://reviews.llvm.org/D16319
llvm-svn: 258273
Summary:
The overloads of CallInst::Create and InvokeInst::Create that are used to
adjust operand bundles purport to create a new instruction "identical in
every way except [for] the operand bundles", so copy the DebugLoc along
with everything else.
Reviewers: sanjoy, majnemer
Subscribers: majnemer, dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D16157
llvm-svn: 257745
`CloneAndPruneIntoFromInst` sometimes RAUW's dead instructions with
`undef` before erasing them (to avoid deleting instructions that still
have uses). This changes the `WeakVH` in `OperandBundleCallSites` to
hold an `undef`, and we need to guard for this situation in eventuality
in `llvm::InlineFunction`.
llvm-svn: 256110
SimplifyCFG allows tail merging with code which terminates in
unreachable which, in turn, makes it possible for an invoke to end up in
a funclet which it was not originally part of.
Using operand bundles on invokes allows us to determine whether or not
an invoke was part of a funclet in the source program.
Furthermore, it allows us to unambiguously answer questions about the
legality of inlining into call sites which the personality may have
trouble with.
Differential Revision: http://reviews.llvm.org/D15517
llvm-svn: 255674
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
- This simplifies the CallSite class, arg_begin / arg_end are now
simple wrapper getters.
- In several places, we were creating CallSite instances solely to call
arg_begin and arg_end. With this change, that's no longer required.
llvm-svn: 255226
`CloneAndPruneIntoFromInst` can DCE instructions after cloning them into
the new function, and so an AssertingVH is too strong. This change
switches CloneCodeInfo to use a std::vector<WeakVH>.
llvm-svn: 255148
The StringRef constructor is unnecessary (since we're converting to
std::string anyway), and having it requires an explicit call to
StringRef's or std::string's constructor.
llvm-svn: 255000
Summary:
Followed the guidelines in:
http://llvm.org/docs/CodingStandards.html#include-style
However, I noticed that uppercase named headers come before lowercase ones
throughout the codebase. So kept them as is.
Patch by Mandeep Singh Grang <mgrang@codeaurora.org>
Reviewers: majnemer, davide, jmolloy, atrick
Subscribers: sanjoy
Differential Revision: http://reviews.llvm.org/D14939
llvm-svn: 254005
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Summary:
This change teaches LLVM's inliner to track and suitably adjust
deoptimization state (tracked via deoptimization operand bundles) as it
inlines through call sites. The operation is described in more detail
in the LangRef changes.
Reviewers: reames, majnemer, chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14552
llvm-svn: 253438