Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657
I've chosen to remove NVPTXInstrInfo::CanTailMerge but not
NVPTXInstrInfo::isLoadInstr and isStoreInstr (which are also dead)
because while the latter two are reasonably useful utilities, the former
cannot be used safely: It relies on successful address space inference
to identify writes to shared memory, but addrspace inference is a
best-effort thing.
llvm-svn: 289740
Summary:
Previously they were defined as a 2D char array in a header file. This
is kind of overkill -- we can let the linker lay out these strings
however it pleases. While we're at it, we might as well just inline
these constants where they're used, as each of them is used only once.
Also move NVPTXUtilities.{h,cpp} into namespace llvm.
Reviewers: tra
Subscribers: jholewinski, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27636
llvm-svn: 289728
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
This has been replaced by the NVPTXInferAddressSpaces pass. We've had
the new one as the default with the old one accessible via a flag for
some months now, and we've had no problems.
Reviewers: tra
Subscribers: llvm-commits, jholewinski, jingyue, mgorny
Differential Revision: https://reviews.llvm.org/D26165
llvm-svn: 285642
Summary:
In isel, transform
Num % Den
into
Num - (Num / Den) * Den
if the result of Num / Den is already available.
Reviewers: tra
Subscribers: hfinkel, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26090
llvm-svn: 285461
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
llvm-svn: 285006
All of these existed because MSVC 2013 was unable to synthesize default
move ctors. We recently dropped support for it so all that error-prone
boilerplate can go.
No functionality change intended.
llvm-svn: 284721
Summary: In getArgumentAlignment check if the ImmutableCallSite pointer CS is non-null before dereferencing. If CS is 0x0 fall back to the ABI type alignment else compute the alignment as before.
Reviewers: eliben, jpienaar
Subscribers: jlebar, vchuravy, cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D9168
llvm-svn: 282045
Summary:
With this change (plus some changes to prevent !invariant from being
clobbered within llvm), clang will be able to model the __ldg CUDA
builtin as an invariant load, rather than as a target-specific llvm
intrinsic. This will let the optimizer play with these loads --
specifically, we should be able to vectorize them in the load-store
vectorizer.
Reviewers: tra
Subscribers: jholewinski, hfinkel, llvm-commits, chandlerc
Differential Revision: https://reviews.llvm.org/D23477
llvm-svn: 281152
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Summary:
Previously these only worked via NVPTX-specific intrinsics.
This change will allow us to convert these target-specific intrinsics
into the general LLVM versions, allowing existing LLVM passes to reason
about their behavior.
It also gets us some minor codegen improvements as-is, from situations
where we canonicalize code into one of these llvm intrinsics.
Reviewers: majnemer
Subscribers: llvm-commits, jholewinski, tra
Differential Revision: https://reviews.llvm.org/D24300
llvm-svn: 281092
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279602
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
Summary:
This switches us to use a different, more powerful algorithm for address
space inference. I've tested this locally and it seems to work great.
Once we're more confident in it, we can remove the old pass altogether.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: https://reviews.llvm.org/D23694
llvm-svn: 279317
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
This bring LLVM-generated PTX closer to what nvcc generates and avoids
triggering issues in ptxas.
For instance, ptxas does not accept .s16 (or .u16) registers as operands
for .fp16 instructions.
Differential Revision: https://reviews.llvm.org/D23460
llvm-svn: 278568
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Avoid unnecessary spills of byval arguments of device functions to
local space on SASS level and subsequent pointer conversion to generic
address space that follows. Instead, make a local copy in IR, provide
a way to access arguments directly, and let LLVM optimize the copy away
when possible.
Differential Review: https://reviews.llvm.org/D21421
llvm-svn: 276153
Taking address of a byval variable in PTX is legal, but currently runs
into miscompilation by ptxas on sm_50+ (NVIDIA issue 1789042).
Work around the issue by enforcing minimum alignment on byval arguments
of device functions.
The change is a no-op on SASS level for sm_3x where ptxas already aligns
local copy by at least 4.
Differential Revision: https://reviews.llvm.org/D22428
llvm-svn: 275893
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr* in the NVPTX backend, mainly by preferring MachineInstr&
over MachineInstr* when a pointer isn't nullable and using range-based
for loops.
There was one piece of questionable code in
NVPTXInstrInfo::AnalyzeBranch, where a condition checked a pointer
converted from an iterator for nullptr. Since this case is impossible
(moreover, the code above guarantees that the iterator is valid), I
removed the check when I changed the pointer to a reference.
Despite that case, there should be no functionality change here.
llvm-svn: 274931
- Rename the ptx.read.* intrinsics to nvvm.read.ptx.sreg.* - some but
not all of these registers were already accessible via the nvvm
name.
- Rename ptx.bar.sync nvvm.bar.sync, to match nvvm.bar0.
There's a fair amount of code motion here, but it's all very
mechanical.
llvm-svn: 274769
Avoid unnecessary spills of such vars to local space on SASS level and
pointer space conversion.
Instead, make a local copy with appropriate addrspacecasts and let
LLVM optimize them away when possible.
This allows loading value of the argument using [symbol+offset]
instead of converting argument to general space pointer and using it
for indexing (which also implicitly converts param space pointer to
local space one on SASS level and triggers copying of argument into
local space in the process).
This reduces call overhead, uses less registers and reduces overall
SASS size by 2-4%.
Differential Review: http://reviews.llvm.org/D21421
llvm-svn: 273313
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Summary:
Currently clang emits these instructions via inline (volatile) asm in
the CUDA headers. Switching to intrinsics will let the optimizer reason
across calls to these intrinsics.
Reviewers: tra
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D21160
llvm-svn: 272298
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
NVVMIntrRange adds !range metadata to calls of NVVM intrinsics
that return values within known limited range.
This allows LLVM to generate optimal code for indexing arrays
based on tid/ctaid which is a frequently used pattern in CUDA code.
Differential Revision: http://reviews.llvm.org/D20644
llvm-svn: 270872
Having an enum member named Default is quite confusing: Is it distinct
from the others?
This patch removes that member and instead uses Optional<Reloc> in
places where we have a user input that still hasn't been maped to the
default value, which is now clear has no be one of the remaining 3
options.
llvm-svn: 269988
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
Part of llvm.org/pr26808.
llvm-svn: 269483
Many files include Passes.h but only a fraction needs to know about the
TargetPassConfig class. Move it into an own header. Also rename
Passes.cpp to TargetPassConfig.cpp while we are at it.
llvm-svn: 269011
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
Summary:
We don't have sign-/zero-extending ldg/ldu instructions defined,
so we need to emulate them with explicit CVTs. We were originally
handling the i8 case, but not any other cases.
Fixes PR26185
Reviewers: jingyue, jlebar
Subscribers: jholewinski
Differential Revision: http://reviews.llvm.org/D19615
llvm-svn: 268272
Summary:
Currently the NVVMReflect pass is run at the beginning of our backend
passes. But really, it should be run as early as possible, as it's
simply resolving an "if" statement in code. So copy it into
TargetMachine::addEarlyAsPossiblePasses.
We still run it at the beginning of the backend passes, since it's
needed for correctness when lowering to nvptx.
(Specifically, NVVMReflect changes each call to the __nvvm_reflect
function or llvm.nvvm.reflect intrinsic into an integer constant, based
on the pass's configuration. Clearly we miss many optimization
opportunities if we perform this transformation at the beginning of
codegen.)
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18616
llvm-svn: 267765
NVPTXLowerKernelArgs is required for correctness, so it should not be guarded
by CodeGenOpt::None.
NVPTXPeephole is optimization only, so it should be skipped when
CodeGenOpt::None.
llvm-svn: 267619
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Summary:
Calls on NVPTX are unusually expensive (for one thing, lots of state
needs to be saved to memory, which is slow), so make the inlininer much
more aggressive.
Reviewers: chandlerc
Subscribers: jholewinski, llvm-commits, tra
Differential Revision: http://reviews.llvm.org/D18561
llvm-svn: 266406
Add a common parent class for ConstantArray, ConstantVector, and
ConstantStruct called ConstantAggregate. These are the aggregate
subclasses of Constant that take operands.
This is mainly a cleanup, adding common `isa` target and removing
duplicated code. However, it also simplifies caching which constants
point transitively at `GlobalValue` (a possible future direction).
llvm-svn: 265466
Summary:
Previously, we were running afoul of the assertion
EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"
in SelectionDAGBuilder.cpp when running the NVPTX/i8-param.ll test.
This is because our backend (for some reason) treats small return values
as i32, but it wasn't ever truncating the i32 back down to the expected
width in the DAG.
Unclear to me whether this fixes any actual bugs -- in this test, at
least, the generated code is unchanged.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17872
llvm-svn: 265091
Summary:
Previously the NVVMReflect pass would read its configuration from
command-line flags or a static configuration given to the pass at
instantiation time.
This doesn't quite work for clang's use-case. It needs to pass a value
for __CUDA_FTZ down on a per-module basis. We use a module flag for
this, so the NVVMReflect pass needs to be updated to read said flag.
Reviewers: tra, rnk
Subscribers: cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18672
llvm-svn: 265090
Summary:
Tablegen tries to infer this from the selection DAG patterns defined for
the instructions, but it can't always.
An instructive example is CLZr64. CLZr32 is correctly inferred to have
no side-effects, but the selection DAG pattern for CLZr64 is slightly
more complicated, and in particular the ctlz DAG node is not at the root
of the pattern. Thus tablegen can't infer that CLZr64 has no
side-effects.
Reviewers: jholewinski
Subscribers: jholewinski, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17472
llvm-svn: 265089
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
Summary:
Currently it's a module pass. Make it a function pass so that we can
move it to PassManagerBuilder's EP_EarlyAsPossible extension point,
which only accepts function passes.
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18615
llvm-svn: 264919
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
This reserves an MDKind for !llvm.loop, which allows callers to avoid a
string-based lookup. I'm not sure why it was missing.
There should be no functionality change here, just a small compile-time
speedup.
llvm-svn: 264371
Summary:
The old address space inference pass (NVPTXFavorNonGenericAddrSpaces) is unable
to convert the address space of a pointer induction variable. This patch adds a
new pass called NVPTXInferAddressSpaces that overcomes that limitation using a
fixed-point data-flow analysis (see the file header comments for details).
The new pass is experimental and not enabled by default. Users can turn
it on by setting the -nvptx-use-infer-addrspace flag of llc.
Reviewers: jholewinski, tra, jlebar
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17965
llvm-svn: 263916
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
Summary:
Tablegen was unable to determine that param loads/stores were actually
reading or writing from memory. I think this isn't a problem in
practice for param stores, because those occur in a block right before
we make our call. But param loads don't have to at the very beginning
of a function, so should be annotated as mayLoad so we don't incorrectly
optimize them.
Reviewers: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17471
llvm-svn: 262381
Summary: Looks like this was caused by a typo.
Reviewers: jholewinski
Subscribers: jholewinski, llvm-commits, tra
Differential Revision: http://reviews.llvm.org/D17357
llvm-svn: 262380
Summary:
Calls sometimes need to be convergent. This is already handled at the
LLVM IR level, but it also needs to be handled at the MI level.
Ideally we'd propagate convergence from instructions, down through the
selection DAG, and into MIs. But this is Hard, and would affect
optimizations in the SDNs -- right now only SDNs with two operands have
any flags at all.
Instead, here's a much simpler hack: Add new opcodes for NVPTX for
convergent calls, and generate these when lowering convergent LLVM
calls.
Reviewers: jholewinski
Subscribers: jholewinski, chandlerc, joker.eph, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17423
llvm-svn: 262373
Summary:
Also simplify some of the embedded C++ logic.
No functional changes.
Reviewers: jholewinski
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17354
llvm-svn: 262371
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Summary:
Previously the machine instructions for bar.sync &co. were not marked as
convergent. This resulted in some MI passes (such as TailDuplication,
fixed in an upcoming patch) doing unsafe things to these instructions.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski, hfinkel
Differential Revision: http://reviews.llvm.org/D17318
llvm-svn: 261115
Summary:
Otherwise we'll try to do unsafe optimizations on these MIs, such as
sinking loads below calls.
(I suspect that this is not the only bug in the NVPTX instruction
tablegen files; I need to comb through them.)
Reviewers: jholewinski, tra
Subscribers: jingyue, jhen, llvm-commits
Differential Revision: http://reviews.llvm.org/D17315
llvm-svn: 261113
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
Previously, we would just output "foo = bar" in the assembly, and then
ptxas would choke. Now we die before emitting any invalid code.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, jhen, tra
Differential Revision: http://reviews.llvm.org/D16490
llvm-svn: 258638
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
llvm-svn: 253436
This extends the work done in r233995 so that now getFragment (in addition to
getSection) also works for variable symbols.
With that the existing logic to decide if a-b can be computed works even if
a or b are variables. Given that, the expression evaluation can avoid expanding
variables as aggressively and that in turn lets the relocation code see the
original variable.
In order for this to work with the asm streamer, there is now a dummy fragment
per section. It is used to assign a section to a symbol when no other fragment
exists.
This patch is a joint work by Maxim Ostapenko andy myself.
llvm-svn: 249303
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
Summary: This fixes a variety of typos in docs, code and headers.
Subscribers: jholewinski, sanjoy, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D12626
llvm-svn: 247495
The pass is needed to remove __nvvm_reflect calls when we link in
libdevice bitcode that comes with CUDA.
Differential Revision: http://reviews.llvm.org/D11663
llvm-svn: 247072
Summary:
Let NVPTX backend detect integer min and max patterns during isel and emit intrinsics that enable hardware support.
Reviewers: jholewinski, meheff, jingyue
Subscribers: arsenm, llvm-commits, meheff, jingyue, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D12377
llvm-svn: 246107
Summary:
__shared__ variable may now emit undef value as initializer, do not
throw error on that.
Test Plan: test/CodeGen/NVPTX/global-addrspace.ll
Patch by Xuetian Weng
Reviewers: jholewinski, tra, jingyue
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D12242
llvm-svn: 245785
Summary:
Add an LSR test that exercises isTruncateFree. Without this change, LSR creates
another indvar representing the truncated value.
Reviewers: jholewinski, eliben
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D12058
llvm-svn: 245611
For NVPTX, try to use 32-bit division instead of 64-bit division when the dividend and divisor
fit in 32 bits. This speeds up some internal benchmarks significantly. The underlying reason
is that many index computations are carried out in 64-bits but never actually exceed the
capacity of a 32-bit word.
llvm-svn: 244684
More specifically, make NVPTXISelDAGToDAG able to emit cached loads (LDG) for pointer induction variables.
Also fix latent bug where LDG was not restricted to kernel functions. I believe that this could not be triggered so far since we do not currently infer that a pointer is global outside a kernel function, and only loads of global pointers are considered for cached loads.
llvm-svn: 244166