Summary:
This patch implements a tablegen-driven Instruction Compression
mechanism for generating RISCV compressed instructions
(C Extension) from the expanded instruction form.
This tablegen backend processes CompressPat declarations in a
td file and generates all the compile-time and runtime checks
required to validate the declarations, validate the input
operands and generate correct instructions.
The checks include validating register operands, immediate
operands, fixed register operands and fixed immediate operands.
Example:
class CompressPat<dag input, dag output> {
dag Input = input;
dag Output = output;
list<Predicate> Predicates = [];
}
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2),
(C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>;
}
The result is an auto-generated header file
'RISCVGenCompressEmitter.inc' which exports two functions for
compressing/uncompressing MCInst instructions, plus
some helper functions:
bool compressInst(MCInst& OutInst, const MCInst &MI,
const MCSubtargetInfo &STI,
MCContext &Context);
bool uncompressInst(MCInst& OutInst, const MCInst &MI,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI);
The clients that include this auto-generated header file and
invoke these functions can compress an instruction before emitting
it, in the target-specific ASM or ELF streamer, or can uncompress
an instruction before printing it, when the expanded instruction
format aliases is favored.
The following clients were added to implement compression\uncompression
for RISCV:
1) RISCVAsmParser::MatchAndEmitInstruction:
Inserted a call to compressInst() to compresses instructions
parsed by llvm-mc coming from an ASM input.
2) RISCVAsmPrinter::EmitInstruction:
Inserted a call to compressInst() to compress instructions that
were lowered from Machine Instructions (MachineInstr).
3) RVInstPrinter::printInst:
Inserted a call to uncompressInst() to print the expanded
version of the instruction instead of the compressed one (e.g,
add s0, s0, a5 instead of c.add s0, a5) when -riscv-no-aliases
is not passed.
This patch squashes D45119, D42780 and D41932. It was reviewed in smaller patches by
asb, efriedma, apazos and mgrang.
Reviewers: asb, efriedma, apazos, llvm-commits, sabuasal
Reviewed By: sabuasal
Subscribers: mgorny, eraman, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, niosHD, kito-cheng, shiva0217, zzheng
Differential Revision: https://reviews.llvm.org/D45385
llvm-svn: 329455
Makes it easier to see mistakes such as the one fixed in r329178 and makes
the different target CMakeLists more consistent.
Also remove some stale-looking comments from the Nios2 target cmakefile.
No intended behavior change.
llvm-svn: 329181
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Summary:
LLVM defaults to the newer .init_array/.fini_array scheme for static
constructors rather than the less desirable .ctors/.dtors (the UseCtors
flag defaults to false). This wasn't being respected in the RISC-V
backend because it fails to call TargetLoweringObjectFileELF::InitializeELF with the the appropriate
flag for UseInitArray.
This patch fixes this by implementing RISCVELFTargetObjectFile and overriding its Initialize method to call
InitializeELF(TM.Options.UseInitArray).
Reviewers: asb, apazos
Reviewed By: asb
Subscribers: mgorny, rbar, johnrusso, simoncook, jordy.potman.lists, sabuasal, niosHD, kito-cheng, shiva0217, llvm-commits
Differential Revision: https://reviews.llvm.org/D44750
llvm-svn: 328433
This patch also includes extensive tests targeted at select and br+fcmp IR
inputs. A sequence of br+fcmp required support for FPR32 registers to be added
to RISCVInstrInfo::storeRegToStackSlot and
RISCVInstrInfo::loadRegFromStackSlot.
llvm-svn: 328104
E.g.
bar (int x)
{
char p[x];
push outgoing variables for foo.
call foo
}
We need to generate stack adjustment instructions for outgoing arguments by
eliminateCallFramePseudoInstr when the function contains variable size
objects to avoid outgoing variables corrupt the variable size object.
Default hasReservedCallFrame will return !hasFP().
We don't want to generate extra sp adjustment instructions when hasFP()
return true, So We override hasReservedCallFrame as !hasVarSizedObjects().
Differential Revision: https://reviews.llvm.org/D43752
llvm-svn: 327938
Summary:
This patch implements relaxation for RISCV in the MC layer.
The following relaxations are currently handled:
1) Relax C_BEQZ to BEQ and C_BNEZ to BNEZ in RISCV.
2) Relax and C_J $imm to JAL x0, $imm and CJAL to JAL ra, $imm.
Reviewers: asb, llvm-commits, efriedma
Reviewed By: asb
Subscribers: shiva0217
Differential Revision: https://reviews.llvm.org/D43055
llvm-svn: 326626
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Implement c.lui immediate constraint to [1, 31] and [0xfffe0, 0xfffff].
The RISC-V ISA describes the constraint as [1, 63], with that value
being loaded in to bits 17-12 of the destination register and sign extended
from bit 17. Therefore, this 6-bit immediate can represent values in the
ranges [1, 31] and [0xfffe0, 0xfffff].
Differential Revision: https://reviews.llvm.org/D42834
llvm-svn: 325792
As pointed out by @sabuasal in a comment on D23568, the logic in
RISCVMCCodeEmitter::getImmOpValue could be more defensive. Although with the
current instruction definitions it is always the case that `VK_RISCV_LO` is
always used with either an I- or S-format instruction, this may not always be
the case in the future. Add a check to ensure we will get an assertion in
debug builds if that changes.
llvm-svn: 325775
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
When the compressed instruction set is enabled, the 16-bit c.nop can be
generated if necessary.
Differential Revision: https://reviews.llvm.org/D41221
Patch by Shiva Chen.
llvm-svn: 322658
Although the register scavenger can often find a spare register, an emergency
spill slot is needed to guarantee success. Reserve this slot in cases where
the function is known to have a large stack (meaning the scavenger may be
needed when forming stack addresses).
llvm-svn: 322269
Branch relaxation is needed to support branch displacements that overflow the
instruction's immediate field.
Differential Revision: https://reviews.llvm.org/D40830
llvm-svn: 322224
This is a prerequisite for the branch relaxation pass, and allows a number of
optimisation passes (e.g. BranchFolding and MachineBlockPlacement) to work.
Differential Revision: https://reviews.llvm.org/D40808
llvm-svn: 322222
Includes support for expanding va_copy. Also adds support for using 'aligned'
registers when necessary for vararg calls, and ensure the frame pointer always
points to the bottom of the vararg spill region. This is necessary to ensure
that the saved return address and stack pointer are always available at fixed
known offsets of the frame pointer.
Differential Revision: https://reviews.llvm.org/D40805
llvm-svn: 322215
Currently it's not possible to access MCSubtargetInfo from a TgtMCAsmBackend.
D20830 threaded an MCSubtargetInfo reference through
MCAsmBackend::relaxInstruction, but this isn't the only function that would
benefit from access. This patch removes the Triple and CPUString arguments
from createMCAsmBackend and replaces them with MCSubtargetInfo.
This patch just changes the interface without making any intentional
functional changes. Once in, several cleanups are possible:
* Get rid of the awkward MCSubtargetInfo handling in ARMAsmBackend
* Support 16-bit instructions when valid in MipsAsmBackend::writeNopData
* Get rid of the CPU string parsing in X86AsmBackend and just use a SubtargetFeature for HasNopl
* Emit 16-bit nops in RISCVAsmBackend::writeNopData if the compressed instruction set extension is enabled (see D41221)
This change initially exposed PR35686, which has since been resolved in r321026.
Differential Revision: https://reviews.llvm.org/D41349
llvm-svn: 321692
c.slli/c.srli/c.srai allow a 5-bit shift in RV32C and a 6-bit shift in RV64C.
This patch adds uimmlog2xlennonzero to reflect this constraint as well as
tests.
Differential Revision: https://reviews.llvm.org/D41216
Patch by Shiva Chen.
llvm-svn: 320799
This patch switches the default for -riscv-no-aliases to false
and updates all affected MC and CodeGen tests. As recommended in
D41071, MC tests use the canonical instructions and the CodeGen
tests use the aliases.
Additionally, for the f and d instructions with rounding mode,
the tests for the aliased versions are moved and tightened such
that they can actually detect if alias emission is enabled.
(see D40902 for context)
Differential Revision: https://reviews.llvm.org/D41225
Patch by Mario Werner.
llvm-svn: 320797
Unfortunately these aren't defined explicitly in the privileged spec, but the
GNU assembler does accept `sfence.vma` and `sfence.vma rs` as well as the
usual `sfence.vma rs, rt`.
llvm-svn: 320575
Adds the assembler aliases for the floating point instructions
which can be mapped to a single canonical instruction. The missing
pseudo instructions (flw, fld, fsw, fsd) are marked as TODO. Other
things, like for example PCREL_LO, have to be implemented first.
This patch builds upon D40902.
Differential Revision: https://reviews.llvm.org/D41071
Patch by Mario Werner.
llvm-svn: 320569
When an instruction mnemonic contains a '.', we usually name the instruction
with a _ in that place. e.g. fadd.s -> FADD_S.
This patch updates RISCVInstrInfoC.td to do the same, e.g. c.nop -> C_NOP.
Also includes some minor formatting changes in RISCVInstrInfoC.td to better
align it with the formatting conventions in the rest of the backend.
llvm-svn: 320560
Adds the assembler pseudo instructions of RV32I and RV64I which can
be mapped to a single canonical instruction. The missing pseudo
instructions (e.g., call, tail, ...) are marked as TODO. Other
things, like for example PCREL_LO, have to be implemented first.
Currently, alias emission is disabled by default to keep the patch
minimal. Alias emission by default will be enabled in a subsequent
patch which also updates all affected tests. Note that this patch
should actually break the floating point MC tests. However, the
used FileCheck configuration is not tight enought to detect the
breakage.
Differential Revision: https://reviews.llvm.org/D40902
Patch by Mario Werner.
llvm-svn: 320487
The TableGen-based calling convention definitions are inflexible, while
writing a function to implement the calling convention is very
straight-forward, and allows difficult cases to be handled more easily. With
this patch adds support for:
* Passing large scalars according to the RV32I calling convention
* Byval arguments
* Passing values on the stack when the argument registers are exhausted
The custom CC_RISCV calling convention is also used for returns.
This patch also documents the ABI lowering that a language frontend is
expected to perform. I would like to work to simplify these requirements over
time, but this will require further discussion within the LLVM community.
We add PendingArgFlags CCState, as a companion to PendingLocs.
The PendingLocs vector is used by a number of backends to handle arguments
that are split during legalisation. However CCValAssign doesn't keep track of
the original argument alignment. Therefore, add a PendingArgFlags vector which
can be used to keep track of the ISD::ArgFlagsTy for every value added to
PendingLocs.
Differential Revision: https://reviews.llvm.org/D39898
llvm-svn: 320359
As frame pointer elimination isn't implemented until a later patch and we make
extensive use of update_llc_test_checks.py, this changes touches a lot of the
RISC-V tests.
Differential Revision: https://reviews.llvm.org/D39849
llvm-svn: 320357
Introduces the AddrFI "addressing mode", which is necessary simply because
it's not possible to write a pattern that directly matches a frameindex.
Ensure callee-saved registers are accessed relative to the stackpointer. This
is necessary as callee-saved register spills are performed before the frame
pointer is set.
Move HexagonDAGToDAGISel::isOrEquivalentToAdd to SelectionDAGISel, so we can
make use of it in the RISC-V backend.
Differential Revision: https://reviews.llvm.org/D39848
llvm-svn: 320353