Add a 'can_connect' parameter to Process plugin initialization, and use
it to filter plugins to these capable of remote connections. This is
used to prevent 'process connect' from picking up a plugin that can only
be used locally, e.g. the legacy FreeBSD plugin.
Differential Revision: https://reviews.llvm.org/D91810
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
The Shell/Register tests now rely on the new behavior, and therefore
are run on non-Darwin systems only. The Python (API) test relies
on the legacy behavior, and is run on Darwin only.
Differential Revision: https://reviews.llvm.org/D91504
D91497 changed lldb/test/Shell/Register/x86-fp-write.test and added target-x86_64 to the REQUIRES clause.
It looks this test does not pass on this platform so removing it since it one of tests failing on the
green dragon build bot.
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
Differential Revision: https://reviews.llvm.org/D91504
The FXSAVE/XSAVE data can have two different layouts on x86_64. When
called as FXSAVE/XSAVE..., the Instruction Pointer and Address Pointer
registers are reported using a 16-bit segment identifier and a 32-bit
offset. When called as FXSAVE64/XSAVE64..., they are reported using
a complete 64-bit offsets instead.
LLDB has historically followed GDB and unconditionally used to assume
the 32-bit layout, with the slight modification of possibly
using a 32-bit segment register (i.e. extending the register into
the reserved 16 upper bits). When the underlying operating system used
FXSAVE64/XSAVE64..., the pointer was split into two halves,
with the upper half repored as the segment registers. While
reconstructing the full address was possible on the user end (and e.g.
the FPU register tests did that), it certainly was not the most
convenient option.
Introduce a two additional 'fip' and 'fdp' registers that overlap
with 'fiseg'/'fioff' and 'foseg'/'foff' respectively, and report
the complete 64-bit address.
Differential Revision: https://reviews.llvm.org/D91497
Add a parser for JSON crashlogs. The CrashLogParser now defers to either
the JSONCrashLogParser or the TextCrashLogParser. It first tries to
interpret the input as JSON, and if that fails falling back to the
textual parser.
Differential revision: https://reviews.llvm.org/D91130
I think the check for whether the process is connected is totally bogus
in the first place, but on the off-chance that's it's not, we should
behave the same in synchronous and asynchronous mode.
When I added TestAbortExitCode I actually planned this to be a generic test for the
exit code functionality on POSIX systems. However due to all the different test setups we
can have I don't think this worked out. Right now the test had to be made so permissive
that it pretty much can't fail.
Just to summarize, we would need to support the following situations:
1. ToT debugserver (on macOS)
2. lldb-server (on other platforms)
3. Any old debugserver version when using the system debugserver (on macOS)
This patch is removing TestAbortExitCode and adds a ToT debugserver specific test
that checks the patch that motivated the whole exit code testing. There is already
an exit-code test for lldb-server from what I can see and 3) is pretty much untestable
as we don't know anything about the system debugserver.
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D89305
Add a test verifying that after the 'watchpoint' command, new values
of x86 debug registers can be read back correctly. The primary purpose
of this test is to catch broken DRn reading and help debugging it.
Differential Revision: https://reviews.llvm.org/D91264
It seems that TestErrorMessages.test is failing on the standalone + Xcode builds
as lldb-server executable can't be found by lit's default PATH search. I assume
invoking lldb-server via a lit substitution gets this working again as
everything else is working, so that's what this patch is doing.
I had to add the lldb-server substitution as the test seems lldb-server specific
and we don't want it to default to debugserver on Darwin.
Using a substitution also seems in general like a good idea so that the commands
lit is printing on failure are using the full path to lldb-server and can be
re-run in a terminal.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D91155
Part 2 of a fix for JITed code debugging. This has been a regression from 5.0 to 6.0 and it's still reproducible on current master: https://bugs.llvm.org/show_bug.cgi?id=36209 Part 1 was D61611 a while ago.
The in-memory object files we obtain from JITLoaderGDB are not yet relocated. It looks like this used to happen on the LLDB side and my guess is that it broke with D38142. (However, it's hard to tell because the whole thing was broken already due to the bug in part 1.) The patch moved relocation resolution to a later point in time and didn't apply it to in-memory objects. I am not aware of any reason why we wouldn't resolve relocations per-se, so I made it unconditional here. On Debian, it fixes the bug for me and all tests in `check-lldb` are still fine.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90769
I found a few cases where entries in the debug_line for a specific line of code have invalid entries (the address is outside of a code section or no section at all) and also valid entries. When this happens lldb might not set the breakpoint because the first line entry it will find in the line table might be the invalid one and since it's range is "invalid" no location is resolved. To get around this I changed the way we parse the line sequences to ignore those starting at an address under the first code segment.
Greg suggested to implement it this way so we don't need to check all sections for every line sequence.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D87172
This would be reproducible in future DWZ category of the testsuite as:
Failed Tests (1):
lldb-api :: python_api/symbol-context/two-files/TestSymbolContextTwoFiles.py
Differential Revision: https://reviews.llvm.org/D91014
This test requires running under the Python we built against (which is
easy) and setting up the PYTHONPATH (which is not worth it for this
simple test).
This patch changes the implementation of Lua's `print()` function to
respect `io.stdout`.
The original implementation uses `lua_writestring()` internally, which is
hardcoded to `stdout`.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D90787
The new FreeBSDRemote plugin has reached feature parity on i386
and amd64 targets. Use it by default on these architectures, while
allowing the use of the legacy plugin via FREEBSD_LEGACY_PLUGIN envvar.
Revisit the method of switching plugins. Apparently, the return value
of PlatformFreeBSD::CanDebugProcess() is what really decides whether
the legacy or the new plugin is used.
Update the test status. Reenable the tests that were previously
disabled on FreeBSD and do not cause hangs or are irrelevant to FreeBSD.
Mark all tests that fail reliably as expectedFailure. For now, tests
that are flaky (i.e. produce unstable results) are left enabled
and cause unpredictable test failures.
Differential Revision: https://reviews.llvm.org/D90757
Current user_id_t format is:
63{isDebugTypes} 62..32{dwo || 7fffffff}
31..0 {die_offset}
while current DIERef format is (I have made up the bit positions but the
field widths do match):
63{m_section==isDebugTypes} 62{m_dwo_num_valid} 61..32{m_dwo_num}
31..0 {m_die_offset}
Proposing to change user_id_t to:
63{isDebugTypes} 62{dwo_is_valid} 61..32{dwo; 0 if !valid}
31..0 {die_offset}
There is no benefit of having 31-bits wide dwo_num in user_id_t when it
gets converted to 30-bits width in DIERef.
This patch is for future DWZ patchset which extends the dwo_is_valid bit
into a 2-bit field (normal, DWO, DWZ, DWZcommon) so that both user_id_t
and DIERef can be changed then the same way.
It would be best to somehow unify user_id_t and DIERef but I do not plan
to do that. user_id_t should probably remain a number for the Python API
compatibility while there still needs to be some class with all the
methods to access it.
SymbolFileDWARF::GetDwpSymbolFile() and SymbolFileDWARF::GetDIE use
0x3fffffff for DWP but that does not clash:
formerly:
31bits32..62:0x7fffffff = normal unit / not any DWO
31bits32..62:0x3fffffff = DWP
31bits32..62:others = DWO unit number
after this patch:
bit62=0 30bits32..61:any = normal unit / not any DWO
bit62=1 30bits32..61:0x3fffffff = DWP
bit62=1 30bits32..61:others = DWO unit number
Differential Revision: https://reviews.llvm.org/D90413
Make it possible to use a relative path in command script import to the
location of the file being sourced. This allows the user to put Python
scripts next to LLDB command files and importing them without having to
specify an absolute path.
To enable this behavior pass `-c` to `command script import`. The
argument can only be used when sourcing the command from a file.
rdar://68310384
Differential revision: https://reviews.llvm.org/D89334
clang supports option -fsplit-machine-functions and this test checks if the
backtraces are sane when functions are split.
With -fsplit-machine-functions, a function with profiles can get split into 2
parts, the original function containing hot code and a cold part as determined
by the profile info and the cold cutoff threshold.. The cold part gets the
".cold" suffix to disambiguate its symbol from the hot part and can be placed
arbitrarily in the address space.
This test checks if the back-trace looks correct when the cold part is executed.
Differential Revision: https://reviews.llvm.org/D90081
Reset registers to their 'initial' state instead of a semi-random
pattern in write tests. While the latter might have been helpful
while debugging failures (i.e. to distinguish unmodified registers
from mistakenly written zeroes), the former makes it possible to test
whether xstate_bv field is written correctly when using XSAVE.
With this change, the four relevant tests start failing on NetBSD
without D90105.
Differential Revision: https://reviews.llvm.org/D90114
For performance reasons the reproducers don't copy the files captured by
the file collector eagerly, but wait until the reproducer needs to be
generated.
This is a problematic when LLDB crashes and we have to do all this
signal-unsafe work in the signal handler. This patch uses a similar
trick to clang, which has the driver invoke a new cc1 instance to do all
this work out-of-process.
This patch moves the writing of the mapping file as well as copying over
the reproducers into a separate process spawned when lldb crashes.
Differential revision: https://reviews.llvm.org/D89600
The existing help text was very terse and was missing several important
options. In the new version, I add a short description of each option
and a slightly longer description of the tool as a whole.
The new option list does not include undocumented no-op options:
--debug and --verbose. It also does not include undocumented short
aliases for long options, with two exceptions: -h, because it's
well-known; and -S (--setsid), as it's used in one test. Using these
options will now produce an error. I believe that is acceptable as users
aren't generally invoking lldb-server directly, and the only way to
learn about the short aliases was by looking at the source.
Differential Revision: https://reviews.llvm.org/D89477
There were invalid DIE references which nobody used. If LLDB starts to
report invalid DIE references it would lock up (mutex lock).
These invalid DIE references are there since initial check-in by:
https://reviews.llvm.org/D83302
The test reorders the basic blocks to be dis-contiguous in the address space and checks if the back trace contains the right symbol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D89179
XFAIL nodefaultlib.cpp on darwin - the test does not pass there
XFAIL TestGdbRemoteMemoryAllocation on windows - memory is allocated
with incorrect permissions
This patch adds support for the _M and _m gdb-remote packets, which
(de)allocate memory in the inferior. This works by "injecting" a
m(un)map syscall into the inferior. This consists of:
- finding an executable page of memory
- writing the syscall opcode to it
- setting up registers according to the os syscall convention
- single stepping over the syscall
The advantage of this approach over calling the mmap function is that
this works even in case the mmap function is buggy or unavailable. The
disadvantage is it is more platform-dependent, which is why this patch
only works on X86 (_32 and _64) right now. Adding support for other
linux architectures should be easy and consist of defining the
appropriate syscall constants. Adding support for other OSes depends on
the its ability to do a similar trick.
Differential Revision: https://reviews.llvm.org/D89124
Add a test to verify that 'register read' and 'register write' commands
work correctly in a multithreaded program, in particular that they read
or write registers for the correct thread. The tests use locking
to ensure that events are serialized and the test can execute reliably.
Differential Revision: https://reviews.llvm.org/D89248
This test
On macOS, this test can instead return `status = 0 (0x00000000) Terminated due to signal 6`. This updates the `CHECK` accordingly.
Differential Revision: https://reviews.llvm.org/D89273
Add a new FreeBSD Process plugin using client/server model. This plugin
is based on the one used by NetBSD. It currently supports a subset
of functionality for amd64. It is automatically used when spawning
lldb-server. It can also be used by lldb client by setting
FREEBSD_REMOTE_PLUGIN environment variable (to any value).
The code is capable of debugging simple single-threaded programs. It
supports general purpose, debug and FPU registers (up to XMM) of amd64,
basic signalling, software breakpoints.
Adding the support for the plugin involves removing some dead code
from FreeBSDPlatform plugin (that was not ever used because
CanDebugProcess() returned false), and replacing it with appropriate
code from NetBSD platform support.
Differential Revision: https://reviews.llvm.org/D88796
Darwin seems to use stmmN instead of stN. Use a regex to accept both.
Also try to actually clear st(7).
Differential revision: https://reviews.llvm.org/D88795
Add a partial read/write tests for x87 FPU registers. This includes
reading and writing ST registers, control registers and floating-point
exception data registers (fop, fip, fdp).
The tests assume the current (roughly incorrect) behavior of reporting
the 'abridged' 8-bit ftag state as 16-bit ftag. They also assume Linux
plugin behavior of reporting fip/fdp split into halves as (fiseg, fioff)
and (foseg, fooff).
Differential Revision: https://reviews.llvm.org/D88583
Rather than relaying on CMake to substitute the full path to the lldb
source root, use the value set in config.lldb_src_root. This makes it
slightly easier to write a custom lit.site.cfg.py.
This reverts commit f775fe5964.
I fixed a return type error in the original patch that was causing a test failure.
Also added a REQUIRES: python to the shell test so we'll skip this for
people who build lldb w/o Python.
Also added another test for the error printing.
Make it possible to run the script command with a different language
than currently selected.
$ ./bin/lldb -l python
(lldb) script -l lua
>>> io.stdout:write("Hello, World!\n")
Hello, World!
When passing the language option and a raw command, you need to separate
the flag from the script code with --.
$ ./bin/lldb -l python
(lldb) script -l lua -- io.stdout:write("Hello, World!\n")
Hello, World!
Differential revision: https://reviews.llvm.org/D86996
`image dump symtab` seems to output the symbols in whatever order they appear in
the DenseMap that is used to filter out symbols with non-unique addresses. As
DenseMap is a hash map this order can change at any time so the output of this
command is pretty unstable. This also causes the `Breakpad/symtab.test` to fail
with enabled reverse iteration (which reverses the DenseMap order to find issues
like this).
This patch makes the DenseMap a std::vector and uses a separate DenseSet to do
the address filtering. The output order is now dependent on the order in which
the symbols are read (which should be deterministic). It might also avoid a bit
of work as all the work for creating the Symbol constructor parameters is only
done when we can actually emplace a new Symbol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87036
The test only checks the exit code that the debug server sends back, but
not the following explanation which is different for debugserver and lldb-server.
If our process terminates due to an unhandled signal, we are supposed to get the
signal code via WTERMSIG. However, we instead try to get the exit status via
WEXITSTATUS which just ends up always calculating signal code 0 (at least on the
macOS implementation where it just shifts the signal code bits away and we're
left with only 0 bits).
The exit status calculation on the LLDB side also seems a bit off as it claims
an exit status that is just the signal code (instead of for example 128 + signal
code), but that will be another patch.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D86336
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
The function was returning an incorrect (empty) value on the first
invocation. Given that this only affected the first invocation, this
bug/typo went mostly unaffected. DW_AT_const_value were particularly
badly affected by this as the GetByteSize call is
SymbolFileDWARF::ParseVariableDIE is likely to be the first call of this
function, and its effects cannot be undone by retrying.
Depends on D86348.
Differential Revision: https://reviews.llvm.org/D86436
Class-level static constexpr variables can have both DW_AT_const_value
(in the "declaration") and a DW_AT_location (in the "definition")
attributes. Our code was trying to handle this, but it was brittle and
hard to follow (and broken) because it was processing the attributes in
the order in which they were found.
Refactor the code to make the intent clearer -- DW_AT_location trumps
DW_AT_const_value, and fix the bug which meant that we were not
displaying these variables properly (the culprit was the delayed parsing
of the const_value attribute due to a need to fetch the variable type.
Differential Revision: https://reviews.llvm.org/D86615
This fixes several issues in handling of DW_AT_const_value attributes:
- the first is that the size of the data given by data forms does not
need to match the size of the underlying variable. We already had the
case to handle this for DW_FORM_(us)data -- this extends the handling
to other data forms. The main reason this was not picked up is because
clang uses leb forms in these cases while gcc prefers the fixed-size
ones.
- The handling of DW_AT_strp form was completely broken -- we would end
up using the pointer value as the result. I've reorganized this code
so that it handles all string forms uniformly.
- In case of a completely bogus form we would crash due to
strlen(nullptr).
Depends on D86311.
Differential Revision: https://reviews.llvm.org/D86348
Update the "image show-unwind" command output to show if the function
being shown is listed as a user-setting or platform trap handler.
Update the individual UnwindPlan dumps to show whether the unwind plan
is registered as a trap handler.
In some cases when we have a DW_AT_const_value and the data can be found in the
DWARFExpression then ValueObjectVariable does not handle it properly and we end
up with an extracting data from value failed error.
The test is a very stripped down assembly file since reproducing this relies on the results of compiling with -O1 which may not be stable over time.
Differential Revision: https://reviews.llvm.org/D86311
When replaying a reproducer captured from a core file, we always use
dsymForUUID for the kernel binary. When enabled, we also use it to find
kexts. Since these files are already contained in the reproducer,
there's no reason to call out to an external tool. If the tool returns a
different result, e.g. because the dSYM got garbage collected, it will
break reproducer replay. The SymbolFileProvider solves the issue by
mapping UUIDs to module and symbol paths in the reproducer.
Differential revision: https://reviews.llvm.org/D86389
Refuse to run the shell tests when %lldb cannot be substituted. This
prevents the test from silently running again the `lldb` in your PATH.
I noticed because when this happens, %lldb-init gets substituted with
lldb-init, which does not exists.
When replaying the reproducer, lldb should source the .lldbinit file
that was captured by the reproducer and not the one in the current home
directory. This requires that we store the home directory as part of the
reproducer. By returning the virtual home directory during replay, we
ensure the correct virtual path gets constructed which the VFS can then
find and remap to the correct file in the reproducer root.
This patch adds a new HomeDirectoryProvider, similar to the existing
WorkingDirectoryProvider. As the home directory is not part of the VFS,
it is stored in LLDB's FileSystem instance.
This is very similar to D85968, only more elusive to since we were not
adding the typedef type to the relevant DeclContext until D86140, which
meant that the DeclContext was populated (and the relevant assertion
hit) only after importing the type into the expression ast in a
particular way.
I haven't checked whether this situation can be hit in the gmodules
case, but my money is on "yes".
Differential Revision: https://reviews.llvm.org/D86216
Parsing DWARFv5 debug_loclist offsets when a CU is parsed is weighing
down memory usage of symbolizers that don't need to parse this data at
all. There's not much benefit to caching these anyway - since they are
O(1) lookup and reading once you know where the offset list starts (and
can do bounds checking with the offset list size too).
In general, I think it might be time to start paying down some of the
technical debt of loc/loclist/range/rnglist parsing to try to unify it a
bit more.
eg:
* Currently DWARFUnit has: RangeSection, RangeSectionBase, LocSection,
LocSectionBase, LocTable, RngListTable, LoclistTableHeader (be nice if
these were all wrapped up in two variables - one for loclists, one for
rnglists)
* rnglists and loclists are handled differently (see:
LoclistTableHeader, but no RnglistTableHeader)
* maybe all these types could be less stateful - lazily parse what they
need to, even reparsing rather than caching because it doesn't seem
too expensive, for instance. (though admittedly so long as it's
constantcost/overead per compilatiton that's probably adequate)
* Maybe implementing and using a DWARFDataExtractor that can be
sub-ranged (so we could slice it up to just the single contribution) -
though maybe that's not so useful because loc/ranges need to refer to
it by absolute, not contribution-relative mechanisms
Differential Revision: https://reviews.llvm.org/D86110
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
With -flimit-debug-info, we can run into cases when we only have a class
as a declaration, but we do have a definition of a nested class. In this
case, clang will hit an assertion when adding a member to an incomplete
type (but only if it's adding a c++ class, and not C struct).
It turns out we already had code to handle a similar situation arising
in the -gmodules scenario. This extends the code to handle
-flimit-debug-info as well, and reorganizes bits of other code handling
completion of types to move functions doing similar things closer
together.
Differential Revision: https://reviews.llvm.org/D85968
When bit-field data was stored in a Scalar in ValueObjectChild during UpdateValue()
it was extracting the bit-field value. Later on in lldb_private::DumpDataExtractor(…)
we were again attempting to extract the bit-field. Which would then not obtain the
correct value. This will remove the extra extraction in UpdateValue().
We hit this specific case when values are passed in registers, which we could only
reproduce in an optimized build.
Differential Revision: https://reviews.llvm.org/D85376
When loading a PE/COFF target, the associated PDB file often wasn't
found. The executable module contains a path for the associated PDB
file, but people often debug from a different directory than the one
their build system uses. (This is especially common in post-mortem
and cross platform debugging.)
Suppose the COFF executable being debugged is `~/proj/foo.exe`, but
it was built elsewhere and refers to `D:\remote\build\env\foobar.pdb`,
LLDB wouldn't find it.
With this change, if no file exists at the PDB path, LLDB will look
in the executable directory for a PDB file that matches the name of
the one it expected (e.g., `~/proj/foobar.pdb`). If found, the PDB
is subject to the same matching criteria (GUIDs and age) as would
have been used had it been in the original location.
This same-directory-as-the-binary rule is commonly used by debuggers
on Windows.
Differential Review: https://reviews.llvm.org/D84815
GNU ld allows sections after a non-SHF_ALLOC section to be covered by PT_LOAD
(PR37607) and assigns addresses to non-SHF_ALLOC output sections (similar to
SHF_ALLOC NOBITS sections. The location counter is not advanced).
This patch tries to fix PR37607 (remove a special case in
`Writer<ELFT>::createPhdrs`). To make the created PT_LOAD meaningful, we cannot
reset dot to 0 for a middle non-SHF_ALLOC output section. This results in
removal of two special cases in LinkerScript::assignOffsets. Non-SHF_ALLOC
non-orphan sections can have non-zero addresses like in GNU ld.
The zero address rule for non-SHF_ALLOC sections is weakened to apply to orphan
only. This results in a special case in createSection and findOrphanPos, respectively.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D85100
Add an option that allows the user to decide to not make the inferior is
responsible for its own TCC permissions. If you don't make the inferior
responsible, it inherits the permissions of its parent. The motivation
is the scenario of running the LLDB test suite from an external hard
drive. If the inferior is responsible, every test needs to be granted
access to the external volume. When the permissions are inherited,
approval needs to be granted only once.
Differential revision: https://reviews.llvm.org/D85237
I have made the DW_FORM_ref4 relative. One could also use relocated
DW_FORM_ref_addr instead.
Tested with:
echo 'void f(){}'|clang -o 1.o -c -Wall -g -x c -;./bin/clang -o 1 1.o ../llvm-monorepo/lldb/test/Shell/SymbolFile/DWARF/DW_TAG_GNU_call_site-DW_AT_low_pc.s;./bin/lldb --no-lldbinit ./1 -o r -o 'p p' -o exit
Summary:
This effectively reverts r188124, which added code to handle
(DW_AT_)declarations of structures with some kinds of children as
definitions. The commit message claims this is a workaround for some
kind of debug info produced by gcc. However, it does not go into
specifics, so it's hard to reproduce or verify that this is indeed still a
problem.
Having this code is definitely a problem though, because it mistakenly
declares incomplete dwarf declarations to be complete. Both clang (with
-flimit-debug-info) and gcc (by default) generate DW_AT_declarations of
structs with children. This happens when full debug info for a class is
not emitted in a given compile unit (e.g. because of vtable homing), but
the class has inline methods which are used in the given compile unit.
In that case, the compilers emit a DW_AT_declaration of a class, but
add a DW_TAG_subprogram child to it to describe the inlined instance of
the method.
Even though the class tag has some children, it definitely does not
contain enough information to construct a full class definition (most
notably, it lacks any members). Keeping the class as incomplete allows
us to search for a real definition in other modules, helping the
-flimit-debug-info flow. And in case the definition is not found we can
display a error message saying that, instead of just showing an empty
struct.
Reviewers: clayborg, aprantl, JDevlieghere, shafik
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D83302
RecordInterestingDirectory was added to collect dSYM bundles and their
content. For the current working directory we only want the directory to
be part of the VFS, not necessarily its contents. This patch renames the
current method to RecordInterestingDirectoryRecursively and adds a new
one that's not recursive.
Summary:
With D81784, lld has started debug info resolving relocations to
garbage-collected symbols as -1 (instead of relocation addend). For an
unaware consumer this generated sequences which seemingly wrap the
address space -- their first entry was 0xfffff, but all other entries
were low numbers.
Lldb stores line sequences concatenated into one large vector, sorted by
the first entry, and searched with std::lower_bound. This resulted in
the low-value entries being placed at the end of the vector, which
utterly confused the lower_bound algorithm, and caused it to not find a
match. (Previously, these sequences would be at the start of the vector,
and normally would contain addresses that are far smaller than any real
address we want to look up, so std::lower_bound was fine.)
This patch makes lldb ignore these kinds of sequences completely. It
does that by changing the construction algorithm from iterating over the
rows (as parsed by llvm), to iterating over the sequences. This is
important because the llvm parsed performs validity checks when
constructing the sequence array, whereas the row array contains raw
data.
Reviewers: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D83957
Summary:
Currently expect_expr will not run the expression if no target is selected. This
patch changes this behavior so that expect_expr will instead fall back to the
dummy target similar to what the `expression` command is doing. This way we
don't have to compile an empty executable to be able to use `expect_expr` (which
is a waste of resources for tests that just test generic type system features).
As a test I modernized the TestTypeOfDeclTypeExpr into a Python test +
expect_expr (as it relied on the dummy target fallback of the expression
command).
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: abidh
Differential Revision: https://reviews.llvm.org/D83388
Summary:
-debug-info-kind=constructor reduces the amount of class debug info that
is emitted; this patch switches to using this as the default.
Constructor homing emits the complete type info for a class only when the
constructor is emitted, so it is expected that there will be some classes that
are not defined in the debug info anymore because they are never constructed,
and we shouldn't need debug info for these classes.
I compared the PDB files for clang, and there are 273 class types that are defined with `=limited`
but not with `=constructor` (out of ~60,000 total class types).
We've looked at a number of the types that are no longer defined with =constructor. The vast
majority of cases are something like class A is used as a parameter in a member function of
some other class B, which is emitted. But the function that uses class A is never called, and class A
is never constructed, and therefore isn't emitted in the debug info.
Bug: https://bugs.llvm.org/show_bug.cgi?id=46537
Subscribers: aprantl, cfe-commits, lldb-commits
Tags: #clang, #lldb
Differential Revision: https://reviews.llvm.org/D79147
There are bugs where you don't want the signal handler to trigger, most
notably when that will cause another crash. Examples of this are lldb
running out of memory or a bug in the reproducer generation code. This
adds an escape hatch trough a (developer oriented) flag to not install
the signal handler.
rdar://problem/65149595
Differential revision: https://reviews.llvm.org/D83496
This is a preparatory rename of the developer facing reproducer flags.
reproducer-skip-version-check -> reproducer-no-version-check
reproducer-auto-generate -> reproducer-generate-on-quit
With -flimit-debug-info, we can have a definition of a class, but no
definition for some of its members. This extends the same logic we were
using for incomplete base classes to cover incomplete members too.
Test forward-declarations.s is removed as it is no longer applicable --
we don't warn anymore when encountering incomplete members as they could
be completed elsewhere. New checks added to TestLimitDebugInfo cover the
handling of incomplete members more thoroughly.
This complements the existing TestLimitDebugInfo.py, which tests this
scenario more comprehensively, but is not able to run on all hosts.
Specifically, it's hard to trigger this code from windows because clang
tries hard to ensure that debug info for types marked with
__declspec(dllexport) is emitted even under -flimit-debug-info (and
dllexport is needed to use a type across shared libraries).
This assembly-based test serves two purposes:
- it tests that -flimit-debug-info code path works for windows binaries
(even though the aforementioned feature means its less likely to be
used there)
- it gives basic test coverage for the -flimit-debug-info handling code
when running the test suite on windows hosts.
On macOS 11, system libraries which are part of the shared cache
are not present on the filesystem anymore. This causes issues
with build.py, because it fails to link binaries with libSystem
or libc++.
The real issue is that build.py was not passing an SDK to the
compiler. The script accepts an argument for the SDK, but it
is currently unused. This patch just threads the SDK through
to the compile and link steps and this fixes a bunch of Shell
test failures on very recent macOS builds.
The `frame recognizer` command only exists when Python scripting is
enabled. Therefore the test should be made conditional on Python.
Without it, the test fails with "'frame recognizer' is not a known
command."
The test fails on Darwin because a different Asynchronous UnwindPlan is
chosen:
Asynchronous (not restricted to call-sites) UnwindPlan is 'assembly
insn profiling'`
instead of what the test expects:
Asynchronous (not restricted to call-sites) UnwindPlan is 'eh_frame
CFI'
Summary:
This fixes a bug in the logic for choosing the unwind plan. Based on the
comment in UnwindAssembly-x86, the intention was that a plan which
describes the function epilogue correctly does not need to be augmented
(and it should be used directly). However, the way this was implemented
(by returning false) meant that the higher level code
(FuncUnwinders::GetEHFrameAugmentedUnwindPlan) interpreted this as a
failure to produce _any_ plan and proceeded with other fallback options.
The fallback usually chosed for "asynchronous" plans was the
"instruction emulation" plan, which tended to fall over on certain
functions with multiple epilogues (that's a separate bug).
This patch simply changes the function to return true, which signals the
caller that the unmodified plan is ready to be used.
The attached test case demonstrates the case where we would previously
fall back to the instruction emulation plan, and unwind incorrectly --
the test asserts that the "augmented" eh_frame plan is used, and that
the unwind is correct.
Reviewers: jasonmolenda, jankratochvil
Subscribers: davide, echristo, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D82378
Summary:
When evaluating an expression referencing a constexpr static member variable, an
error is issued because the PDB does not specify a symbol with an address that
can be relocated against.
Rather than attempt to resolve the variable's value within the IR execution, the
values of all constants can be looked up and incorporated into the AST of the
record type as a literal, mirroring the original compiler AST.
This change applies to DIA and native PDB loaders.
Patch By: jackoalan
Reviewers: aleksandr.urakov, jasonmolenda, zturner, jdoerfert, teemperor
Reviewed By: aleksandr.urakov
Subscribers: sstefan1, lldb-commits, llvm-commits, #lldb
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D82160
Add support for changing the stdout and stderr file in Lua's I/O library
and hook it up with the debugger's output and error file respectively
for the interactive Lua interpreter.
https://reviews.llvm.org/D82273
Add a way to quit the interactive script interpreter from a shell tests.
Currently, the only way (that I know) to exit the interactive Lua
interpreter is to send a EOF with CTRL-D. I noticed that the embedded
Python script interpreter accepts quit (while the regular python
interpreter doesn't). I've added a special case to the Lua interpreter
to do the same.
Differential revision: https://reviews.llvm.org/D82272
Executing commands below will get you bombarded by a wall of Python
command prompts (>>> ).
$ echo 'foo' | ./bin/lldb -o script
$ cat /tmp/script
script
print("foo")
$ lldb --source /tmp/script
The issue is that our custom input reader doesn't handle EOF. According
to the Python documentation, file.readline always includes a trailing
newline character unless the file ends with an incomplete line. An empty
string signals EOF. This patch raises an EOFError when that happens.
[1] https://docs.python.org/2/library/stdtypes.html#file.readline
Differential revision: https://reviews.llvm.org/D81898
Color the error: and warning: part of the CommandReturnObject output,
similar to how an error is printed from the driver when colors are
enabled.
Differential revision: https://reviews.llvm.org/D81058
D80519 <https://reviews.llvm.org/D80519>
added support for `DW_TAG_GNU_call_site` but
Bug 45886 <https://bugs.llvm.org/show_bug.cgi?id=45886>
found one case did not work.
There is:
0x000000b1: DW_TAG_GNU_call_site
DW_AT_low_pc (0x000000000040111e)
DW_AT_abstract_origin (0x000000cc "a")
...
0x000000cc: DW_TAG_subprogram
DW_AT_name ("a")
DW_AT_prototyped (true)
DW_AT_low_pc (0x0000000000401109)
^^^^^^^^^^^^ - here it did overwrite the 'low_pc' variable containing value 0x40111e we wanted
DW_AT_high_pc (0x0000000000401114)
DW_AT_frame_base (DW_OP_call_frame_cfa)
DW_AT_GNU_all_call_sites (true)
DW_TAG_GNU_call_site attributes order as produced by GCC:
0x000000b1: DW_TAG_GNU_call_site
DW_AT_low_pc (0x000000000040111e)
DW_AT_abstract_origin (0x000000cc "a")
clang produces the attributes in opposite order:
0x00000064: DW_TAG_GNU_call_site
DW_AT_abstract_origin (0x0000002a "a")
DW_AT_low_pc (0x0000000000401146)
Differential Revision: https://reviews.llvm.org/D81334
Previously, we were simply ignoring them and continuing the evaluation.
This behavior does not seem useful, because the resulting value will
most likely be completely bogus.
Several SBAddress properties use the lldb.target or lldb.process
convenience variables which are only set under the interactive script
interpreter. Unfortunately, users have been using these properties in
Python script and commands. This patch raises a Python exception to
force users to use GetLoadAddress instead.
Differential revision: https://reviews.llvm.org/D80848
This adds a new target `check-lldb-reproducers` that replaces the old
`check-lldb-repro`. The latter would only run the shell tests, while
`check-lldb-reproducers` includes the API tests as well. The new target
will be used on GreenDragon.
It's still possible to run just the shell tests with reproducers,
although now that requires crafting the lit invocation yourself. The
parameters haven't changed and are the shame for the API and shell
tests:
--param lldb-run-with-repro=capture
--param lldb-run-with-repro=replay
This patch also updates the reproducer documentation.
Summary:
For ObjCInterfaceDecls, LLDB iterates over the `methods` of the interface in FindExternalVisibleDeclsByName
since commit ef423a3ba5 .
However, when LLDB calls `oid->methods()` in that function, Clang will pull in all declarations in the current
DeclContext from the current ExternalASTSource (which is again, `ClangExternalASTSourceCallbacks`). The
reason for that is that `methods()` is just a wrapper for `decls()` which is supposed to provide a list of *all*
(both currently loaded and external) decls in the DeclContext.
However, `ClangExternalASTSourceCallbacks::FindExternalLexicalDecls` doesn't implement support for ObjCInterfaceDecl,
so we don't actually add any declarations and just mark the ObjCInterfaceDecl as having no ExternalLexicalStorage.
As LLDB uses the ExternalLexicalStorage to see if it can complete a type with the ExternalASTSource, this causes
that LLDB thinks our class can't be completed any further by the ExternalASTSource
and will from on no longer make any CompleteType/FindExternalLexicalDecls calls to that decl. This essentially
renders those types unusable in the expression parser as they will always be considered incomplete.
This patch just changes the call to `methods` (which is just a `decls()` wrapper), to some ad-hoc `noload_methods`
call which is wrapping `noload_decls()`. `noload_decls()` won't trigger any calls to the ExternalASTSource, so
this prevents that ExternalLexicalStorage will be set to false.
The test for this is just adding a method to an ObjC interface. Before this patch, this unset the ExternalLexicalStorage
flag and put the interface into the state described above.
In a normal user session this situation was triggered by setting a breakpoint in a method of some ObjC class. This
caused LLDB to create the MethodDecl for that specific method and put it into the the ObjCInterfaceDecl.
Also `ObjCLanguageRuntime::LookupInCompleteClassCache` needs to be unable to resolve the type do
an actual definition when the breakpoint is set (I'm not sure how exactly this can happen, but we just
found no Type instance that had the `TypePayloadClang::IsCompleteObjCClass` flag set in its payload in
the situation where this happens. This however doesn't seem to be a regression as logic wasn't changed
from what I can see).
The module-ownership.mm test had to be changed as the only reason why the ObjC interface in that test had
it's ExternalLexicalStorage flag set to false was because of this unintended side effect. What actually happens
in the test is that ExternalLexicalStorage is first set to false in `DWARFASTParserClang::CompleteTypeFromDWARF`
when we try to complete the `SomeClass` interface, but is then the flag is set back to true once we add
the last ivar of `SomeClass` (see `SetMemberOwningModule` in `TypeSystemClang.cpp` which is called
when we add the ivar). I'll fix the code for that in a follow-up patch.
I think some of the code here needs some rethinking. LLDB and Clang shouldn't infer anything about the ExternalASTSource
and its ability to complete the current type form the `ExternalLexicalStorage` flag. We probably should
also actually provide any declarations when we get asked for the lexical decls of an ObjCInterfaceDecl. But both of those
changes are bigger (and most likely would cause us to eagerly complete more types), so those will be follow up patches
and this patch just brings us back to the state before commit ef423a3ba5 .
Fixes rdar://63584164
Reviewers: aprantl, friss, shafik
Reviewed By: aprantl, shafik
Subscribers: arphaman, abidh, JDevlieghere
Differential Revision: https://reviews.llvm.org/D80556
The llvm DWARFExpression dump is nearly identical, but better -- for
example it does print a spurious space after zero-argument expressions.
Some parts of our code (variable locations) have been already switched
to llvm-based expression dumping. This switches the remainder: unwind
plans and some unit tests.
This patchs adds an optional warning that is printed when stopped at a
frame that was compiled in a source language that LLDB has no plugin
for.
The motivational use-case is debugging Swift code on Linux. When the
user accidentally invokes the system LLDB that was built without the
Swift plugin, it is very much non-obvious why debugging doesnt
work. This warning makes it easy to figure out what went wrong.
<rdar://problem/56986569>
Print a little snippet before exiting when passed unrecognized
arguments. The goal is twofold:
- Point users to lldb --help.
- Make it clear that we exited the debugger.
There appears to be consensus in D80165 that this is the desired
behavior and I personally agree.
Differential revision: https://reviews.llvm.org/D80226
Before the transition to libOption it was possible to specify arguments
for the inferior without -- as long as they didn't start with a dash.
For example, the following invocations should all behave the same:
$ lldb inferior inferior-arg
$ lldb inferior -- inferior-arg
$ lldb -- inferior inferior-arg
This patch fixes that behavior, documents it and adds a test to cover
the different combinations.
Differential revision: https://reviews.llvm.org/D80165
This reverts commit 525a591f0f.
Fixed an issue with pointers to members based on typedefs. In this case,
LLVM would emit a second UDT. I fixed it by not passing the class type
to getTypeIndex when the base type is not a function type. lowerType
only uses the class type for direct function types. This suggests if we
have a PMF with a function typedef, there may be an issue, but that can
be solved separately.
> Before this patch, S_[L|G][THREAD32|DATA32] records were emitted with a simple name, not the fully qualified name (namespace + class scope).
>
> Differential Revision: https://reviews.llvm.org/D79447
This causes asserts in Chromium builds:
CodeViewDebug.cpp:2997: void llvm::CodeViewDebug::emitDebugInfoForUDTs(const std::vector<std::pair<std::string, const DIType *>> &):
Assertion `OriginalSize == UDTs.size()' failed.
I will follow up on the Phabricator issue.
Before this patch, S_[L|G][THREAD32|DATA32] records were emitted with a simple name, not the fully qualified name (namespace + class scope).
Differential Revision: https://reviews.llvm.org/D79447
This recommits f665e80c02 which was reverted in 1cbd1b8f69 for breaking
TestFoundationDisassembly.py. The fix is to use --force in the test to avoid
bailing out on large functions.
I have also doubled the large function limit to 8000 bytes (~~ 2000 insns), as
the foundation library contains a lot of large-ish functions. The intent of this
feature is to prevent accidental disassembling of enormous (multi-megabyte)
"functions", not to get in people's way.
The original commit message follows:
If we have a binary without symbol information (and without
LC_FUNCTION_STARTS, if on a mac), then we have to resort to using
heuristics to determine the function boundaries. However, these don't
always work, and so we can easily end up thinking we have functions
which are several megabytes in size. Attempting to (accidentally)
disassemble these can take a very long time spam the terminal with
thousands of lines of disassembly.
This patch works around that problem by adding a sanity check to the
disassemble command. If we are about to disassemble a function which is
larger than a certain threshold, we will refuse to disassemble such a
function unless the user explicitly specifies the number of instructions
to disassemble, uses start/stop addresses for disassembly, or passes the
(new) --force argument.
The threshold is currently fairly aggressive (4000 bytes ~~ 1000
instructions). If needed, we can increase it, or even make it
configurable.
Differential Revision: https://reviews.llvm.org/D79789
These test don't execute the binaries they build, and so they don't need
to build for the host. By hardcoding the target, we don't have do xfail
or skip them for targets which don't have the appropriate support in
clang(-cl).
Summary:
If we have a binary without symbol information (and without
LC_FUNCTION_STARTS, if on a mac), then we have to resort to using
heuristics to determine the function boundaries. However, these don't
always work, and so we can easily end up thinking we have functions
which are several megabytes in size. Attempting to (accidentally)
disassemble these can take a very long time spam the terminal with
thousands of lines of disassembly.
This patch works around that problem by adding a sanity check to the
disassemble command. If we are about to disassemble a function which is
larger than a certain threshold, we will refuse to disassemble such a
function unless the user explicitly specifies the number of instructions
to disassemble, uses start/stop addresses for disassembly, or passes the
(new) --force argument.
The threshold is currently fairly aggressive (4000 bytes ~~ 1000
instructions). If needed, we can increase it, or even make it
configurable.
Differential Revision: https://reviews.llvm.org/D79789
Summary:
The D programming language has 'char', 'wchar', and 'dchar' as base types,
which are defined as UTF-8, UTF-16, and UTF-32, respectively.
It also has type constructors (e.g. 'const' and 'immutable'),
that leads to D compilers emitting DW_TAG_base_type with DW_ATE_UTF
and name 'char', 'immutable(wchar)', 'const(char)', etc...
Before this patch, DW_ATE_UTF would only recognize types that
followed the C/C++ naming, and emit an error message for the rest, e.g.:
```
error: need to add support for DW_TAG_base_type 'immutable(char)'
encoded with DW_ATE = 0x10, bit_size = 8
```
The code was changed to check the byte size first,
then fall back to the old name-based check.
Reviewers: clayborg, labath
Reviewed By: labath
Subscribers: labath, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D79559
This patch marks following tests as xfail for arm-linux target.
lldb/test/API/functionalities/load_using_paths/TestLoadUsingPaths.py
lldb/test/API/python_api/thread/TestThreadAPI.py
lldb/test/Shell/Recognizer/assert.test
Bugs have been filed for all of them for the corresponding failing
component.
This patch fixes minidebuginfo-set-and-hit-breakpoint.test for arm-linux
targets. 32-bit elf executables use .rel.dyn and 64-bit uses .rela.dyn for
relocation entries for dynamic symbols.