the expression parser to locate instances where
dyn_cast<>() and isa<>() are used on types, and
replace them with getAs<>() as appropriate.
The difference is that dyn_cast<>() and isa<>()
are essentially LLVM/Clang's equivalent of RTTI
-- that is, they try to downcast the object and
return NULL if they cannot -- but getAs<>() can
traverse typedefs to perform a semantic cast.
llvm-svn: 146537
validates the "self," "this," and "_cmd" pointers
that get passed into expressions. It used to check
them aggressively for validity before allowing the
expression to run as an object method; now, this
functionality is gated by a bool and off by default.
Now the default is that when LLDB is stopped in a
method of a class, code entered using "expr" will
always masquerade as an instance method. If for
some reason "self," "this," or "_cmd" is unavailable
it will be reported as NULL. This may cause the
expression to crash if it relies on those pointers,
but for example getting the addresses of ivars will
now work as the user would expect.
llvm-svn: 146465
from symbols more accessible, I have added a second
map to the ClangASTImporter: the ObjCInterfaceMetaMap.
This map keeps track of all type definitions found for
a particular Objective-C interface, allowing the
ClangASTSource to refer to all possible sources when
looking for method definitions.
There is a bug in lookup that I still need to figure out,
but after that we should be able to report full method
information for Objective-C classes shown in symbols.
Also fixed some errors I ran into when enabling the maps
for the persistent type store. The persistent type store
previously did not use the ClangASTImporter to import
types, instead using ASTImporters that got allocated each
time a type needed copying. To support the requirements
of the persistent type store -- namely, that types must be
copied, completed, and then completely severed from their
origin in the parser's AST context (which will go away) --
I added a new function called DeportType which severs all
these connections.
llvm-svn: 145914
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
which will in the future allow expressions to be
compiled as C, C++, and Objective-C instead of the
current default Objective-C++. This feature requires
some additional support from Clang -- specifically, it
requires reference types in the parser regardless of
language -- so it is not yet exposed to the user.
llvm-svn: 144042
target is stopped in a C++ or Objective-C method
but the "self" pointer's valid range actually
doesn't cover the current location. Before, that
was confusing Clang to the point where it crashed;
now, we sanity-check and fall back to pretending
we're in a C function if "self" or "this" isn't
available.
llvm-svn: 143676
AST importer on completing namespace mappings from
ClangExpressionDeclMap to ClangASTSource.
ClangASTSource now contains a TargetSP which it
uses to lookup namespaces in all of a target's
modules. I will use the TargetSP in the future to
look up globals.
llvm-svn: 143275
lifetime of ClangExpressionDeclMap. This allows
ClangExpressionVariables found during parsing to be
queried for their containing namespaces during
expression execution.
Other clients (like ClangFunction) explicitly delete
this state, so they should not result in any memory
leaks.
llvm-svn: 141821
expression into a separate class. This class
encapsulates wrapping the function as needed. I
am also moving from using booleans to indicate
what the expression's language should be to using
lldb::LanguageType instead.
llvm-svn: 140545
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
allocate memory in a process that did not support
expression execution. Also improved detection of
whether or not a process can execute expressions.
llvm-svn: 140202
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
to execute expressions even in the absence of a process.
This allows expressions to run in situations where the
target cannot run -- e.g., to perform calculations based
on type information, or to inspect a binary's static
data.
This modification touches the following files:
lldb-private-enumerations.h
Introduce a new enum specifying the policy for
processing an expression. Some expressions should
always be JITted, for example if they are functions
that will be used over and over again. Some
expressions should always be interpreted, for
example if the target is unsafe to run. For most,
it is acceptable to JIT them, but interpretation
is preferable when possible.
Target.[h,cpp]
Have EvaluateExpression now accept the new enum.
ClangExpressionDeclMap.[cpp,h]
Add support for the IR interpreter and also make
the ClangExpressionDeclMap more robust in the
absence of a process.
ClangFunction.[cpp,h]
Add support for the new enum.
IRInterpreter.[cpp,h]
New implementation.
ClangUserExpression.[cpp,h]
Add support for the new enum, and for running
expressions in the absence of a process.
ClangExpression.h
Remove references to the old DWARF-based method
of evaluating expressions, because it has been
superseded for now.
ClangUtilityFunction.[cpp,h]
Add support for the new enum.
ClangExpressionParser.[cpp,h]
Add support for the new enum, remove references
to DWARF, and add support for checking whether
the expression could be evaluated statically.
IRForTarget.[h,cpp]
Add support for the new enum, and add utility
functions to support the interpreter.
IRToDWARF.cpp
Removed
CommandObjectExpression.cpp
Remove references to the obsolete -i option.
Process.cpp
Modify calls to ClangUserExpression::Evaluate
to pass the correct enum (for dlopen/dlclose)
SBValue.cpp
Add support for the new enum.
SBFrame.cpp
Add support for he new enum.
BreakpointOptions.cpp
Add support for the new enum.
llvm-svn: 139772
Address ranges are now split up into two different tables:
- one in DWARFDebugInfo that is compile unit specific
- one in each DWARFCompileUnit that has exact function DIE offsets
This helps keep the size of the aranges down since the main table will get
uniqued and sorted and have consecutive ranges merged. We then only parse the
compile unit one on demand once we have determined that a compile unit contains
the address in question. We also now use the .debug_aranges section if there
is one instead of always indexing the DWARF manually.
NameToDIE now uses a UniqueCStringMap<dw_offset> map instead of a std::map.
std::map is very bulky as each node has 3 pointers and the key and value types.
This gets our NameToDIE entry down to 12 bytes each instead of 48 which saves
us a lot of memory when we have very large DWARF.
DWARFDebugAranges now has a smaller footprint for each range it contains to
save on memory.
llvm-svn: 139557
expression parser. You can use a persistent
type like this:
(lldb) expr struct $foo { int a; int b; };
(lldb) struct $foo i; i.a = 2; i.b = 3; i
($foo) $0 = {
(int) a = 2
(int) b = 3
}
typedefs work similarly.
This patch affects the following files:
test/expression_command/persistent_types/*
A test case for persistent types,
in particular structs and typedefs.
ClangForward.h
Added TypeDecl, needed to declare some
functions in ASTResultSynthesizer.h
ClangPersistentVariables.[h,cpp]
Added a list of persistent types to the
persistent variable store.
ASTResultSynthesizer.[h,cpp]
Made the AST result synthesizer iterate
across TypeDecls in the expression, and
record any persistent types found. Also
made a minor documentation fix.
ClangUserExpression.[h,cpp]
Extended the user expression class to
keep the state needed to report the
persistent variable store for the target
to the AST result synthesizers.
Also introduced a new error code for
expressions that executed normally but
did not return a result.
CommandObjectExpression.cpp
Improved output for expressions (like
declarations of new persistent types) that
don't return a result. This is no longer
treated as an error.
llvm-svn: 138383
that detects what context the current expression is
meant to execute in. LLDB now properly consults
the method declaration in the debug information
rather than trying to hunt down the "this" or "self"
pointer by name, which can be misleading.
Other fixes include:
- LLDB now properly detects that it is inside
an inlined C++ member function.
- LLDB now allows access to non-const members when
in const code.
- The functions in SymbolFile that locate the
DeclContext containing a DIE have been renamed
to reflect what they actually do. I have added
new functions that find the DeclContext for the
DIE itself.
I have also introduced testcases for C++ and
Objective-C.
llvm-svn: 136999
current context. Previously, if there was a variable
called "self" available, the expression parser
assumed it was inside a method. But class methods
in Objective-C also take a "self" parameter, of DWARF
type "id". We now detect this properly, and only
assume we're in an instance method if "self" is a
pointer to an Objective-C object.
llvm-svn: 136784
Used hand merge to apply the diffs. I did not apply the diffs for FormatManager.h and
the diffs for memberwise initialization for ValueObject.cpp because they changed since.
I will ask my colleague to apply them later.
llvm-svn: 135508
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
into the mainline LLDB codebase. MCJIT introduces
API improvements and better architectural support.
This commit adds a new subsystem, the
ProcessDataAllocator, which is responsible for
performing static data allocations on behalf of the
IR transformer. MCJIT currently does not support
the relocations required to store the constant pool
in the same allocation as the function body, so we
allocate a heap region separately and redirect
static data references from the expression to that
heap region in a new IR modification pass.
This patch also fixes bugs in the IR
transformations that were exposed by the transition
to the MCJIT. Finally, the patch also pulls in a
more recent revision of LLVM so that the MCJIT is
available for use.
llvm-svn: 131923
Modified ClangUserExpression and ClangUtilityFunction to display the actual
error (if one is available) that made the JIT fail instead of a canned
response.
Fixed the restoring of all register values when the 'G' packet doesn't work
to use the correct data.
llvm-svn: 131454
give the reason for the interrupt. Also make sure it we don't want to unwind from the evaluation
we print something if it is interrupted.
llvm-svn: 131448
treated as being permanently resident in target
memory. In fact, since the expression's stack frame
is deleted and potentially re-used after the
expression completes, the variables need to be treated
as being freeze-dried.
llvm-svn: 131104
variables be evaluated statically.
Also fixed a bug that caused the results of
statically-evaluated expressions to be materialized
improperly.
This bug also removes some duplicate code.
llvm-svn: 131042
pointer to a ValueObject or any of its dependent ValueObjects, and the whole cluster will
stay around as long as that shared pointer stays around.
llvm-svn: 130035
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
clang_type_t
GetClangFullType(); // Get a completely defined clang type
clang_type_t
GetClangLayoutType(); // Get a clang type that can be used for type layout
clang_type_t
GetClangForwardType(); // A type that can be completed if needed, but is more efficient.
llvm-svn: 125691
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602
it to interpret a "this" variable that was merely
a pointer -- that is, not a class pointer -- as
meaning that the current context was inside a C++
method. This bug would prevent expressions from
evaluating correctly in regular C code if there
was a pointer variable named "this" in scope.
llvm-svn: 124117
500 ms.
Make MachThreadList more threadsafe.
Added code to make sure the thread register state was properly flushed for x86_64.
Fixed an missing return code for the current thread in the new thread suffix code.
Improved debugserver logging.
llvm-svn: 123815
I added support for asking if the GDB remote server supports thread suffixes
for packets that should be thread specific (register read/write packets) because
the way the GDB remote protocol does it right now is to have a notion of a
current thread for register and memory reads/writes (set via the "$Hg%x" packet)
and a current thread for running ("$Hc%x"). Now we ask the remote GDB server
if it supports adding the thread ID to the register packets and we enable
that feature in LLDB if supported. This stops us from having to send a bunch
of packets that update the current thread ID to some value which is prone to
error, or extra packets.
llvm-svn: 123762
by LLDB. Instead of being materialized into the input structure
passed to the expression, variables are left in place and pointers
to them are materialzied into the structure. Variables not resident
in memory (notably, registers) get temporary memory regions allocated
for them.
Persistent variables are the most complex part of this, because they
are made in various ways and there are different expectations about
their lifetime. Persistent variables now have flags indicating their
status and what the expectations for longevity are. They can be
marked as residing in target memory permanently -- this is the
default for result variables from expressions entered on the command
line and for explicitly declared persistent variables (but more on
that below). Other result variables have their memory freed.
Some major improvements resulting from this include being able to
properly take the address of variables, better and cleaner support
for functions that return references, and cleaner C++ support in
general. One problem that remains is the problem of explicitly
declared persistent variables; I have not yet implemented the code
that makes references to them into indirect references, so currently
materialization and dematerialization of these variables is broken.
llvm-svn: 123371
line commands can use the current thread/frame.
Fixed an issue with expressions that get sandboxed in an objective C method
where unichar wasn't being passed down.
Added a "static size_t Scalar::GetMaxByteSize();" function in case we need
to know the max supported by size of something within a Scalar object.
llvm-svn: 122027
can avoid running the code in the target if the
expression's result is known and the expression
has no side effects.
Right now this feature is quite conservative in
its guess about side effects, and it only computes
integer results, but the machinery to make it more
sophisticated is there.
llvm-svn: 121952
values or persistent expression variables. Now if an expression consists of
a value that is a child of a variable, or of a persistent variable only, we
will create a value object for it and make a ValueObjectConstResult from it to
freeze the value (for program variables only, not persistent variables) and
avoid running JITed code. For everything else we still parse up and JIT code
and run it in the inferior.
There was also a lot of clean up in the expression code. I made the
ClangExpressionVariables be stored in collections of shared pointers instead
of in collections of objects. This will help stop a lot of copy constructors on
these large objects and also cleans up the code considerably. The persistent
clang expression variables were moved over to the Target to ensure they persist
across process executions.
Added the ability for lldb_private::Target objects to evaluate expressions.
We want to evaluate expressions at the target level in case we aren't running
yet, or we have just completed running. We still want to be able to access the
persistent expression variables between runs, and also evaluate constant
expressions.
Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects
can now dump their contents with the UUID, arch and full paths being logged with
appropriate prefix values.
Thread hardened the Communication class a bit by making the connection auto_ptr
member into a shared pointer member and then making a local copy of the shared
pointer in each method that uses it to make sure another thread can't nuke the
connection object while it is being used by another thread.
Added a new file to the lldb/test/load_unload test that causes the test a.out file
to link to the libd.dylib file all the time. This will allow us to test using
the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else.
llvm-svn: 121745
the code to pass the _cmd pointer has been improved, and _cmd
is now set to the value of _cmd for the current context, as
opposed to being simply NULL.
llvm-svn: 121739
access to the members of the Objective-C self object.
The approach we take is to generate the method as a
@category on top of the self object, and to pass the
"self" pointer to it. (_cmd is currently NULL.)
Most changes are in ClangExpressionDeclMap, but the
change that adds support to the ABIs to pass _cmd
touches a fair amount of code.
llvm-svn: 121722
LLDB expression execution.
We also now print the argument structure after execution,
to allow us to verify that the expression did indeed
execute correctly.
llvm-svn: 121126
so that it is not referring to potentially stale
state during IR execution.
This was done by introducing modular state (like
ClangExpressionVariable) where groups of state
variables have well-defined lifetimes:
- m_parser_vars are specific to parsing, and only
exist between calls to WillParse() and DidParse().
- m_struct_vars survive for the entire execution
of the ClangExpressionDeclMap because they
provide the template for a materialized set of
expression variables.
- m_material_vars are specific to a single
instance of materialization, and only exist
between calls to Materialize() and
Dematerialize().
I also removed unnecessary references to long-
lived state that really didn't need to be referred
to at all, and also introduced several assert()s
that helped me diagnose a few bugs (fixed too).
llvm-svn: 120778
in C++ methods. There were two fixes involved:
- For an object whose contents are not known, the
expression should be treated as a non-member, and
"this" should have no meaning.
- For a const object, the method should be declared
const as well.
llvm-svn: 120606
Added a ThreadPlanCallUserExpression that differs from ThreadPlanCallFunction in that it holds onto a shared pointer to its ClangUserExpression so that can't go away before the thread plan is done using it.
Fixed the stop message when you hit a breakpoint while running a user expression so it is more obvious what has happened.
llvm-svn: 120386
that the result of an expression should be coerced to
a specific type. Also made breakpoint conditions pass
in the bool type for this type.
The expression parser ignores this indication for now.
llvm-svn: 119779
when a function starts and ends, and also the
disassembly for anything that is a client of
ClangExpressionParser after it has been JIT
compiled.
llvm-svn: 118401
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319
that check pointer validity fail to parse. Now
lldb does not crash in that case. Also added
support for checking Objective-C class validity
in the Version 1 runtime as well as Version 2
runtimes with varying levels of available debug
support.
llvm-svn: 118271
adding support into lldb_private::Process:
virtual uint32_t
lldb_private::Process::LoadImage (const FileSpec &image_spec,
Error &error);
virtual Error
lldb_private::Process::UnloadImage (uint32_t image_token);
There is a default implementation that should work for both linux and MacOSX.
This ability has also been exported through the SBProcess API:
uint32_t
lldb::SBProcess::LoadImage (lldb::SBFileSpec &image_spec,
lldb::SBError &error);
lldb::SBError
lldb::SBProcess::UnloadImage (uint32_t image_token);
Modified the DynamicLoader plug-in interface to require it to be able to
tell us if it is currently possible to load/unload a shared library:
virtual lldb_private::Error
DynamicLoader::CanLoadImage () = 0;
This way the dynamic loader plug-ins are allows to veto whether we can
currently load a shared library since the dynamic loader might know if it is
currenlty loading/unloading shared libraries. It might also know about the
current host system and know where to check to make sure runtime or malloc
locks are currently being held.
Modified the expression parser to have ClangUserExpression::Evaluate() be
the one that causes the dynamic checkers to be loaded instead of other code
that shouldn't have to worry about it.
llvm-svn: 118227
which holds the name of a file whose contents are
prefixed to each expression. For example, if the file
~/lldb.prefix.header contains:
typedef unsigned short my_type;
then you can do this:
(lldb) settings set target.expr-prefix '~/lldb.prefix.header'
(lldb) expr sizeof(my_type)
(unsigned long) $0 = 2
When the variable is changed, the corresponding file
is loaded and its contents are fetched into a string
that is stored along with the target. This string
is then passed to each expression and inserted into
it during parsing, like this:
typedef unsigned short my_type;
void
$__lldb_expr(void *$__lldb_arg)
{
sizeof(my_type);
}
llvm-svn: 117627
all of the calls inlined in the header file for better performance.
Fixed the summary for C string types (array of chars (with any combo if
modifiers), and pointers to chars) work in all cases.
Fixed an issue where a forward declaration to a clang type could cause itself
to resolve itself more than once if, during the resolving of the type itself
it caused something to try and resolve itself again. We now remove the clang
type from the forward declaration map in the DWARF parser when we start to
resolve it and avoid this additional call. This should stop any duplicate
members from appearing and throwing all the alignment of structs, unions and
classes.
llvm-svn: 117437
"unsigned short." As discussed in the comments,
this is pending a better solution to the problem
of types not in the debug information but readily
available through headers.
llvm-svn: 117247
method results to int. This will only last until we
get accurate type information for Objective-C methods
or some way of making their types inferred by the
parser.
llvm-svn: 117178
Changed all of our synthesized "___clang" functions, types and variables
that get used in expressions over to have a prefix of "$_lldb". Now when we
do name lookups we can easily switch off of the first '$' character to know
if we should look through only our internal (when first char is '$') stuff,
or when we should look through program variables, functions and types.
Converted all of the clang expression code over to using "const ConstString&"
values for names instead of "const char *" since there were many places that
were converting the "const char *" names into ConstString names and them
throwing them away. We now avoid making a lot of ConstString conversions and
benefit from the quick comparisons in a few extra spots.
Converted a lot of code from LLVM coding conventions into LLDB coding
conventions.
llvm-svn: 116634
bool ValueObject::GetIsConstant() const;
void ValueObject::SetIsConstant();
This will stop anything from being re-evaluated within the value object so
that constant result value objects can maintain their frozen values without
anything being updated or changed within the value object.
Made it so the ValueObjectConstResult can be constructed with an
lldb_private::Error object to allow for expression results to have errors.
Since ValueObject objects contain error objects, I changed the expression
evaluation in ClangUserExpression from
static Error
ClangUserExpression::Evaluate (ExecutionContext &exe_ctx,
const char *expr_cstr,
lldb::ValueObjectSP &result_valobj_sp);
to:
static lldb::ValueObjectSP
Evaluate (ExecutionContext &exe_ctx, const char *expr_cstr);
Even though expression parsing is borked right now (pending fixes coming from
Sean Callanan), I filled in the implementation for:
SBValue SBFrame::EvaluateExpression (const char *expr);
Modified all expression code to deal with the above changes.
llvm-svn: 115589
for C++ classes. Replaced it with a less hacky approach:
- If an expression is defined in the context of a
method of class A, then that expression is wrapped as
___clang_class::___clang_expr(void*) { ... }
instead of ___clang_expr(void*) { ... }.
- ___clang_class is resolved as the type of the target
of the "this" pointer in the method the expression
is defined in.
- When reporting the type of ___clang_class, a method
with the signature ___clang_expr(void*) is added to
that class, so that Clang doesn't complain about a
method being defined without a corresponding
declaration.
- Whenever the expression gets called, "this" gets
looked up, type-checked, and then passed in as the
first argument.
This required the following changes:
- The ABIs were changed to support passing of the "this"
pointer as part of trivial calls.
- ThreadPlanCallFunction and ClangFunction were changed
to support passing of an optional "this" pointer.
- ClangUserExpression was extended to perform the
wrapping described above.
- ClangASTSource was changed to revert the changes
required by the hack.
- ClangExpressionParser, IRForTarget, and
ClangExpressionDeclMap were changed to handle
different manglings of ___clang_expr flexibly. This
meant no longer searching for a function called
___clang_expr, but rather looking for a function whose
name *contains* ___clang_expr.
- ClangExpressionParser and ClangExpressionDeclMap now
remember whether "this" is required, and know how to
look it up as necessary.
A few inheritance bugs remain, and I'm trying to resolve
these. But it is now possible to use "this" as well as
refer implicitly to member variables, when in the proper
context.
llvm-svn: 114384
expressions. This involved three main changes:
- In ClangUserExpression::ClangUserExpression(),
we now insert the following lines into the
expression:
#define this ___clang_this
#define self ___clang_self
- In ClangExpressionDeclMap::GetDecls(), we
special-case ___clang_(this|self) and instead
look up "this" or "self"
- In ClangASTSource, we introduce the capability
to generate Decls with a different, overridden,
name from the one that was requested, e.g.
this for ___clang_this.
llvm-svn: 113866
- If you put a semicolon at the end of an expression,
this no longer causes the expression parser to
error out. This was a two-part fix: first,
ClangExpressionDeclMap::Materialize now handles
an empty struct (such as when there is no return
value); second, ASTResultSynthesizer walks backward
from the end of the ASTs until it reaches something
that's not a NullStmt.
- ClangExpressionVariable now properly byte-swaps when
printing itself.
- ClangUtilityFunction now cleans up after itself when
it's done compiling itself.
- Utility functions can now use external functions just
like user expressions.
- If you end your expression with a statement that does
not return a value, the expression now runs correctly
anyway.
Also, added the beginnings of an Objective-C object
validator function, which is neither installed nor used
as yet.
llvm-svn: 113789
debugger to insert self-contained functions for use by
expressions (mainly for error-checking).
In order to support detecting whether a crash occurred
in one of these helpers -- currently our preferred way
of reporting that an error-check failed -- added a bit
of support for getting the extent of a JITted function
in addition to just its base.
llvm-svn: 112324
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249