The "root nodes" of the graph are displayed in bold. My intent here
was to bold just the public-API headers, e.g. <vector> and
<experimental/coroutine> and <stdlib.h>, but not helper headers
such as <__functional_base> and <__iterator/next.h>. However,
the recent mass helper-header-ification has exposed defects in
this logic: all the new helpers were ending up bolded! Fix this.
Also, add <__undef_macros> to the list of headers we don't display
by default (like <__config>); it's not interesting to see those edges.
Also, add a sample `dot` command line to the `--help` text.
The `operator[]` of `_UnaryOp` and `_BinaryOp` returns the result of
calling `__op_`, so its return type should be `__result_type`, not
e.g. `_A0::value_type`. However, `_UnaryOp::value_type` also should
never have been `_A0::value_type`; it needs to be the correct type
for the result of the unary op, e.g. `bool` when the op is `logical_not`.
This turns out to matter when multiple operators are nested, e.g.
`+(v == v)` needs to have a `value_type` of `bool`, not `int`,
even when `v` is of type `valarray<int>`.
Differential Revision: https://reviews.llvm.org/D103416
That's how it was originally intended but that wasn't possible because
we still needed to support older CMake versions.
The problem here is that the sources in TableGenGlobalISel are meant to
be linked into both llvm-tblgen and TableGenTests (a unit test), but not
be part of LLVM proper. So they shouldn't be an ordinary LLVM component.
Because they are used in llvm-tblgen, they can't draw in the LLVM dylib
dependency, but then we'd have to do the same thing in TableGenTests to
make sure we don't link both a static Support library and another copy
through the LLVM dylib.
With an object library we're just reusing the object files and don't
have to care about dependencies at all.
Differential Revision: https://reviews.llvm.org/D74588
We might want to use it when creating SCEV proper in createSCEV(),
now that we don't `forgetValue()` in `SimplifyIndvar::strengthenOverflowingOperation()`,
which might have caused us to loose some optimization potential.
Loop peeling is currently performed as part of UnrollLoop().
Outside test scenarios, it is always performed with an unroll
count of 1. This means that unrolling doesn't actually do anything
apart from performing post-unroll simplification.
When testing, it's currently possible to specify both an explicit
peel count and an explicit unroll count. This doesn't perform any
sensible operation and may result in miscompiles, see
https://bugs.llvm.org/show_bug.cgi?id=45939.
This patch moves peeling from UnrollLoop() into tryToUnrollLoop(),
so that peeling does not also perform a susequent unroll. We only
run the post-unroll simplifications. Specifying both an explicit
peel count and unroll count is forbidden.
In the future, we may want to support both (non-PGO) peeling a
loop and unrolling it, but this needs to be done by first performing
the peel and then recalculating unrolling heuristics on a now
possibly analyzable loop.
Differential Revision: https://reviews.llvm.org/D103362
This is another step towards implementing the equivalent of
`platform process list` and related functionality.
`uint32_t` is used for the argument count and index despite the
underlying value being `size_t` to be consistent with other
index-based access to arguments.
Differential Revision: https://reviews.llvm.org/D103675
This diff adds first bits to support special symbols $ld$previous* in LLD.
$ld$* symbols modify properties/behavior of the library
(e.g. its install name, compatibility version or hide/add symbols)
for specific target versions.
Test plan: make check-lld-macho
Differential revision: https://reviews.llvm.org/D103505
Functions shared between generalized matrix-multiplication optimization
and other post-reschedule optimizations (tiling, prevect) are moved into
the schedule tree transformation utility ScheduleTreeTransform.
Controlled by a compiler option, if 32-bit indices can be handled
with zero/sign-extention alike (viz. no worries on non-negative
indices), scatter/gather operations can use the more efficient
32-bit SIMD version.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D103632
Preparation for landing the tests for llvm::makeVisitor, including
breaking out the a "Counted" base class and explicitly testing
the prvalue case as distinct from the rvalue case.
Differential Revision: https://reviews.llvm.org/D103206
While the IndVars issue (PR50384) has been resolved,
and the compile performance improved, a new blocker emerged,
the codegen machine instruction scheduling is also quadratic.
So we still can't really specify the right value here.
Filed PR50584.
It's possible to specify refer to an undefined derived type as the type of a
component of another derived type and then never define the type of the
component. We were not detecting this situation. To fix this, I
changed the value of isForwardReferenced_ in the symbol's
DerivedTypeDetails and checked for it when performing other derived type
checks.
I also had to record the fact that error messages were previously
emitted for the same problem in some cases so that I could avoid
duplicate messages.
I also added a test.
Differential Revision: https://reviews.llvm.org/D103714
Implement the following semantic check:
"A list item may not appear in a linear clause, unless it is the loop iteration variable."
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D100224
This patch fixes a Windows -EHa crash induced by previous commit 797ad70152.
The crash was caused by "LifetimeMarker" scope (with option -O2) that should not be considered as SEH Scope.
This change also turns off -fasync-exceptions by default under -EHa option for now.
Differential Revision: https://reviews.llvm.org/D103664#2799944
Nesting mode is a new experimental feature in the OpenMP
runtime. It allows a user to set up nesting for an application in a
way that corresponds to the hardware topology levels on the machine an
application is being run on. For example, if a machine has 2 sockets,
each with 12 cores, then use of nesting mode could set up an outer
level of nesting that uses 2 threads per parallel region, and an inner
level of nesting that uses 12 threads per parallel region.
Nesting mode is controlled with the KMP_NESTING_MODE environment
variable as follows:
1) KMP_NESTING_MODE = 0: Nesting mode is off (default); max-active-levels-var
is set to 1 (the default -- nesting is off, nested parallel regions
are serialized).
2) KMP_NESTING_MODE = 1: Nesting mode is on, and a number of threads
will be assigned for each level discovered in the machine topology;
max-active-levels-var is set to the number of levels discovered.
3) KMP_NESTING_MODE = n, n>1: [Note: this option is experimental and may change
or be removed in the future.] Nesting mode is on, and a number of
threads will be assigned for each topology level discovered on the
machine, up to k<=n levels (since there may be fewer than n levels
discovered in the topology), and beyond the kth level, nested parallel
regions will be serialized; NOTE: max-active-levels-var is 1 (the default --
nesting is off, and nested parallel regions are serialized until the
user changes max-active-levels-var.
If the user sets OMP_NUM_THREADS or OMP_MAX_ACTIVE_LEVELS, they will
override KMP_NESTING_MODE settings for the associated environment
variables. The detected topology may be limited by an affinity mask
setting on the initial thread, or if the user sets KMP_HW_SUBSET. See
also: KMP_HOT_TEAMS_MAX_LEVEL for controlling use of hot teams for
nested parallel regions. Note that this feature only sets numbers of
threads used at nesting levels. The user should make use of
OMP_PLACES and OMP_PROC_BIND or KMP_AFFINITY for affinitizing those
threads, if desired.
Differential Revision: https://reviews.llvm.org/D102188
This resolves an issue tripping a `DCHECK`, as I was checking for the
capacity and not the size. We don't need to 0-init the Vector as it's
done already, and make sure we only 0-out the string on clear if it's
not empty.
Differential Revision: https://reviews.llvm.org/D103716
`__profd_*` variables are referenced by code only when value profiling is
enabled. If disabled (e.g. default -fprofile-instr-generate), the symbols just
waste space on ELF/Mach-O. We change the comdat symbol from `__profd_*` to
`__profc_*` because an internal symbol does not provide deduplication features
on COFF. The choice doesn't matter on ELF.
(In -DLLVM_BUILD_INSTRUMENTED_COVERAGE=on build, there is now no `__profd_*` symbols.)
On Windows this enables further optimization. We are no longer affected by the
link.exe limitation: an external symbol in IMAGE_COMDAT_SELECT_ASSOCIATIVE can
cause duplicate definition error.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150758.html
We can thus use llvm.compiler.used instead of llvm.used like ELF (D97585).
This avoids many `/INCLUDE:` directives in `.drectve`.
Here is rnk's measurement for Chrome:
```
This reduced object file size of base_unittests.exe, compiled with coverage, optimizations, and gmlt debug info by 10%:
#BEFORE
$ find . -iname '*.obj' | xargs du -b | awk '{ sum += $1 } END { print sum}'
1047758867
$ du -cksh base_unittests.exe
82M base_unittests.exe
82M total
# AFTER
$ find . -iname '*.obj' | xargs du -b | awk '{ sum += $1 } END { print sum}'
937886499
$ du -cksh base_unittests.exe
78M base_unittests.exe
78M total
```
The change is NFC for Mach-O.
Reviewed By: davidxl, rnk
Differential Revision: https://reviews.llvm.org/D103372
The following was found by a customer and is accepted by the other primary
C++ compilers, but fails to compile in Clang:
namespace sss {
double foo(int, double);
template <class T>
T foo(T); // note: target of using declaration
} // namespace sss
namespace oad {
void foo();
}
namespace oad {
using ::sss::foo;
}
namespace sss {
using oad::foo; // note: using declaration
}
namespace sss {
double foo(int, double) { return 0; }
template <class T>
T foo(T t) { // error: declaration conflicts with target of using
return t;
}
} // namespace sss
I believe the issue is that MergeFunctionDecl() was calling
checkUsingShadowRedecl() but only considering a FunctionDecl as a
possible shadow and not FunctionTemplateDecl. The changes in this patch
largely mirror how variable declarations were being handled by also
catching FunctionTemplateDecl.