These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.
llvm-svn: 249422
Instructions which we can synthesis from a SCEV expression are not
generated directly, but only when they are used as an operand of
another instruction. This avoids generating unnecessary instructions
and works more reliably than first inserting them and then deleting
them later on.
This commit was reverted in r248860 due to a remaining miscompile, where
we forgot to synthesis the operand values that were referenced from scalar
writes. test/Isl/CodeGen/scalar-store-from-same-bb.ll tests that we do this
now correctly.
llvm-svn: 248900
This reverts commit 07830c18d789ee72812d5b5b9b4f8ce72ebd4207.
The commit broke at least one test in lnt,
MultiSource/Benchmarks/Ptrdist/bc/number.c
was miss compiled and the test produced a wrong result.
One Polly test case that was added later was adjusted too.
llvm-svn: 248860
Every once in a while we see code that accesses memory with different types,
e.g. to perform operations on a piece of memory using type 'float', but to copy
data to this memory using type 'int'. Modeled in C, such codes look like:
void foo(float A[], float B[]) {
for (long i = 0; i < 100; i++)
*(int *)(&A[i]) = *(int *)(&B[i]);
for (long i = 0; i < 100; i++)
A[i] += 10;
}
We already used the correct types during normal operations, but fall back to our
detected type as soon as we import changed memory access functions. For these
memory accesses we may generate invalid IR due to a mismatch between the element
type of the array we detect and the actual type used in the memory access. To
address this issue, we always cast the newly created address of a memory access
back to the type of the memory access where the address will be used.
llvm-svn: 248781
We now only delete trivially dead instructions in the BB we copy (copyBB), but
not in any other BB. Only for copyBB we know that there will _never_ be any
future uses of instructions that have no use after copyBB has been generated.
Other instructions in the AST that have been generated by IslNodeBuilder may
look dead at the moment, but may possibly still be referenced by GlobalMaps. If
we delete them now, later uses would break surprisingly.
We do not have a test case that breaks due to us deleting too many instructions.
This issue was found by inspection.
llvm-svn: 248688
After having generated a new user statement a couple of inefficient or trivially
dead instructions may remain. This commit runs instruction simplification over
the newly generated blocks to ensure unneeded instructions are removed right
away.
This commit does not yet add simplification for non-affine subregions.
llvm-svn: 248681
Besides class, function and file names, we also change the command line option
from -polly-codegen-isl to just -polly-codegen. The isl postfix is a leftover
from the times when we still had the CLooG based -polly-codegen. Today it is
just redundant and we drop it.
llvm-svn: 237099
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.
llvm-svn: 235384
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize. To not
waste compile time we bail early.
Differential Revision: http://reviews.llvm.org/D7735
llvm-svn: 229820
This allows us to skip ast and code generation if we did not optimize
a SCoP and will not generate parallel or alias annotations. The
initial heuristic to exit is simple but allows improvements later on.
All failing test cases have been modified to disable early exit, thus
to keep their coverage.
Differential Revision: http://reviews.llvm.org/D7254
llvm-svn: 228851
SCEV based code generation has been the default for two weeks after having
been tested for a long time. We now drop the support the non-scev-based code
generation.
llvm-svn: 222978
The isl based backend has been tested since a long time and with the recently
commited OpenMP support the last missing piece of functionality was ported from
the CLooG backend.
The isl based backend gives us interesting new functionality:
- Run-time alias checks (enabled by default)
Optimize scops that contain possibly aliasing pointers. This feature has
largely increased the number of loop nests we consider for optimization.
Thanks Johannes!
- Delinearization (not yet enabled by default)
Model accesses to multi-dimensional arrays precisely. This will allow us to
understand kernels with multi-dimensional VLAs written in Julia, boost::ublas,
coremark or C99.
Thanks Sebastian!
- Generation of higher quality code
Sven and me spent a long time to optimize the quality of the generated code. A
major focus were expressions as they result from modulos/divisions or
piecewise affine expressions (a ? b : c).
- Full/Partial tile separation, polyhedral unrolling
The isl code generation provides functionality to generate specialized code
for core and cleanup loops and to specialize code using polyhedral context
information while unrolling statements.
(not yet exploited in Polly)
- Modifieable access functions
We can now use standard isl functionality to remap memory accesses to new
data locations. A standard use case is the use of shared memory, where
accesses to a larger region in global memory need to be mapped to a smaller
shared memory region using a modulo mapping.
(not yet exploited in Polly)
The cloog based code generation is still available for comparision, but is
scheduled for removal.
llvm-svn: 222101
We restricted the new access functions to be a subset of the old one
because we want to keep the alignment, however if the alignment is
"not special", thus the default for the type, we can allow any access.
Differential Revision: http://reviews.llvm.org/D5680
llvm-svn: 219503
This class allows to store information about the arrays in the SCoP.
For each base pointer in the SCoP one object is created storing the
type and dimension sizes of the array. The objects can be obtained via
the SCoP, a MemoryAccess or the isl_id associated with the output
dimension of a MemoryAccess (the description of what is accessed).
So far we use the information in the IslExprBuilder to create the
right base type before indexing into the base array. This fixes the
bug http://llvm.org/bugs/show_bug.cgi?id=21113 (both test cases are
included). On top of that we can now build runtime alias checks for
delinearized arrays as the dimension sizes are also part of the
ScopArrayInfo objects.
Differential Revision: http://reviews.llvm.org/D5613
llvm-svn: 219077
This also forbids the json importer to access other memory locations
than the original instruction as we to reuse the alignment of the
original load/store.
Differential Revision: http://reviews.llvm.org/D5560
llvm-svn: 218883
This change will build all alias groups (minimal/maximal accesses
to possible aliasing base pointers) we have to check before
we can assume an alias free environment. It will also use these
to create Runtime Alias Checks (RTC) in the ISL code generation
backend, thus allow us to optimize SCoPs despite possibly aliasing
pointers when this backend is used.
This feature will be enabled for the isl code generator, e.g.,
--polly-code-generator=isl, but disabled for:
- The cloog code generator (still the default).
- The case delinearization is enabled.
- The case non-affine accesses are allowed.
llvm-svn: 218046
+ Remove the class IslGenerator which duplicates the functionality of
IslExprBuilder.
+ Use the IslExprBuilder to create code for memory access relations.
+ Also handle array types during access creation.
+ Enable scev codegen for one of the transformed memory access tests,
thus access creation without canonical induction variables available.
+ Update one test case to the new output.
llvm-svn: 214659
The updated tests use a different context than the old ones did.
Other than that only their path and the code generation we use
changed.
llvm-svn: 214657