This factors out the pass timing code into a separate `TimingManager`
that can be plugged into the `PassManager` from the outside. Users are
able to provide their own implementation of this manager, and use it to
time additional code paths outside of the pass manager. Also allows for
multiple `PassManager`s to run and contribute to a single timing report.
More specifically, moves most of the existing infrastructure in
`Pass/PassTiming.cpp` into a new `Support/Timing.cpp` file and adds a
public interface in `Support/Timing.h`. The `PassTiming` instrumentation
becomes a wrapper around the new timing infrastructure which adapts the
instrumentation callbacks to the new timers.
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D100647
Now that passes have support for running nested pipelines, the inliner can now allow for users to provide proper nested pipelines to use for optimization during inlining. This revision also changes the behavior of optimization during inlining to optimize before attempting to inline, which should lead to a more accurate cost model and prevents the need for users to schedule additional duplicate cleanup passes before/after the inliner that would already be run during inlining.
Differential Revision: https://reviews.llvm.org/D91211
This allows to defers the check for traits to the execution instead of forcing it on the pipeline creation.
In particular, this is making our pipeline creation tolerant to dialects not being loaded in the context yet.
Reviewed By: rriddle, GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D86915
This moves the threading check to runOnOperation. This produces a much cleaner interface for the adaptor pass, and will allow for the ability to enable/disable threading in a much cleaner way in the future.
Differential Revision: https://reviews.llvm.org/D78313
Summary: ClassID is a bit janky right now as it involves passing a magic pointer around. This revision hides the internal implementation mechanism within a new class TypeID. This class is a value-typed wrapper around the original ClassID implementation.
Differential Revision: https://reviews.llvm.org/D77768
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Statistics are a way to keep track of what the compiler is doing and how effective various optimizations are. It is useful to see what optimizations are contributing to making a particular program run faster. Pass-instance specific statistics take this even further as you can see the effect of placing a particular pass at specific places within the pass pipeline, e.g. they could help answer questions like "what happens if I run CSE again here".
Statistics can be added to a pass by simply adding members of type 'Pass::Statistics'. This class takes as a constructor arguments: the parent pass pointer, a name, and a description. Statistics can be dumped by the pass manager in a similar manner to how pass timing information is dumped, i.e. via PassManager::enableStatistics programmatically; or -pass-statistics and -pass-statistics-display via the command line pass manager options.
Below is an example:
struct MyPass : public OperationPass<MyPass> {
Statistic testStat{this, "testStat", "A test statistic"};
void runOnOperation() {
...
++testStat;
...
}
};
$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics
Pipeline Display:
===-------------------------------------------------------------------------===
... Pass statistics report ...
===-------------------------------------------------------------------------===
'func' Pipeline
MyPass
(S) 15 testStat - A test statistic
MyPass
(S) 6 testStat - A test statistic
List Display:
===-------------------------------------------------------------------------===
... Pass statistics report ...
===-------------------------------------------------------------------------===
MyPass
(S) 21 testStat - A test statistic
PiperOrigin-RevId: 284022014
For the cases where there are multiple levels of nested pass managers, the parent thread ID is not enough to distinguish the parent of a given pass pipeline. Passing in the parent pass gives an exact anchor point.
PiperOrigin-RevId: 272105461
This allows for parallelizing across pipelines of multiple operation types. AdaptorPasses can now hold pass managers for multiple operation types and will dispatch based upon the operation being operated on.
PiperOrigin-RevId: 268017344
This is done via a new set of instrumentation hooks runBeforePipeline/runAfterPipeline, that signal the lifetime of a pass pipeline on a specific operation type. These hooks also provide the parent thread of the pipeline, allowing for accurate merging of timers running on different threads.
PiperOrigin-RevId: 267909193
This change generalizes the structure of the pass manager to allow arbitrary nesting pass managers for other operations, at any level. The only user visible change to existing code is the fact that a PassManager must now provide an MLIRContext on construction. A new class `OpPassManager` has been added that represents a pass manager on a specific operation type. `PassManager` will remain the top-level entry point into the pipeline, with OpPassManagers being nested underneath. OpPassManagers will still be implicitly nested if the operation type on the pass differs from the pass manager. To explicitly build a pipeline, the 'nest' methods on OpPassManager may be used:
// Pass manager for the top-level module.
PassManager pm(ctx);
// Nest a pipeline operating on FuncOp.
OpPassManager &fpm = pm.nest<FuncOp>();
fpm.addPass(...);
// Nest a pipeline under the FuncOp pipeline that operates on spirv::ModuleOp
OpPassManager &spvModulePM = pm.nest<spirv::ModuleOp>();
// Nest a pipeline on FuncOps inside of the spirv::ModuleOp.
OpPassManager &spvFuncPM = spvModulePM.nest<FuncOp>();
To help accomplish this a new general OperationPass is added that operates on opaque Operations. This pass can be inserted in a pass manager of any type to operate on any operation opaquely. An example of this opaque OperationPass is a VerifierPass, that simply runs the verifier opaquely on the current operation.
/// Pass to verify an operation and signal failure if necessary.
class VerifierPass : public OperationPass<VerifierPass> {
void runOnOperation() override {
Operation *op = getOperation();
if (failed(verify(op)))
signalPassFailure();
markAllAnalysesPreserved();
}
};
PiperOrigin-RevId: 266840344
When multi-threading is enabled in the pass manager the meaning of the display
slightly changes. First, a new timing column is added, `User Time`, that
displays the total time spent across all threads. Secondly, the `Wall Time`
column displays the longest individual time spent amongst all of the threads.
This means that the `Wall Time` column will continue to give an indicator on the
perceived time, or clock time, whereas the `User Time` will display the total
cpu time.
Example:
$ mlir-opt foo.mlir -experimental-mt-pm -cse -canonicalize -convert-to-llvmir -pass-timing
===-------------------------------------------------------------------------===
... Pass execution timing report ...
===-------------------------------------------------------------------------===
Total Execution Time: 0.0078 seconds
---User Time--- ---Wall Time--- --- Name ---
0.0175 ( 88.3%) 0.0055 ( 70.4%) Function Pipeline
0.0018 ( 9.3%) 0.0006 ( 8.1%) CSE
0.0013 ( 6.3%) 0.0004 ( 5.8%) (A) DominanceInfo
0.0017 ( 8.7%) 0.0006 ( 7.1%) FunctionVerifier
0.0128 ( 64.6%) 0.0039 ( 50.5%) Canonicalizer
0.0011 ( 5.7%) 0.0004 ( 4.7%) FunctionVerifier
0.0004 ( 2.1%) 0.0004 ( 5.2%) ModuleVerifier
0.0010 ( 5.3%) 0.0010 ( 13.4%) LLVMLowering
0.0009 ( 4.3%) 0.0009 ( 11.0%) ModuleVerifier
0.0198 (100.0%) 0.0078 (100.0%) Total
PiperOrigin-RevId: 240636269
* print-ir-before=(comma-separated-pass-list)
- Print the IR before each of the passes provided within the pass list.
* print-ir-before-all
- Print the IR before every pass in the pipeline.
* print-ir-after=(comma-separated-pass-list)
- Print the IR after each of the passes provided within the pass list.
* print-ir-after-all
- Print the IR after every pass in the pipeline.
* print-ir-module-scope
- Always print the Module IR, even for non module passes.
PiperOrigin-RevId: 238523649
Below shows the output for an example mlir-opt command line.
mlir-opt foo.mlir -verify-each=false -cse -canonicalize -cse -cse -pass-timing
list view (-pass-timing-display=list):
* In this mode the results are displayed in a list sorted by total time; with each pass/analysis instance aggregated into one unique result. This mode is similar to the output of 'time-passes' in llvm-opt.
===-------------------------------------------------------------------------===
... Pass execution timing report ...
===-------------------------------------------------------------------------===
Total Execution Time: 0.0097 seconds (0.0096 wall clock)
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
0.0051 ( 58.3%) 0.0001 ( 12.2%) 0.0052 ( 53.8%) 0.0052 ( 53.8%) Canonicalizer
0.0025 ( 29.1%) 0.0005 ( 58.2%) 0.0031 ( 31.9%) 0.0031 ( 32.0%) CSE
0.0011 ( 12.6%) 0.0003 ( 29.7%) 0.0014 ( 14.3%) 0.0014 ( 14.2%) DominanceInfo
0.0087 (100.0%) 0.0009 (100.0%) 0.0097 (100.0%) 0.0096 (100.0%) Total
pipeline view (-pass-timing-display=pipeline):
* In this mode the results are displayed in a nested pipeline view that mirrors the internal pass pipeline that is being executed in the pass manager. This view is useful for understanding specifically which parts of the pipeline are taking the most time, and can also be used to identify when analyses are being invalidated and recomputed.
===-------------------------------------------------------------------------===
... Pass execution timing report ...
===-------------------------------------------------------------------------===
Total Execution Time: 0.0082 seconds (0.0081 wall clock)
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
0.0042 (100.0%) 0.0039 (100.0%) 0.0082 (100.0%) 0.0081 (100.0%) Function Pipeline
0.0005 ( 11.6%) 0.0008 ( 21.1%) 0.0013 ( 16.1%) 0.0013 ( 16.2%) CSE
0.0002 ( 5.0%) 0.0004 ( 9.3%) 0.0006 ( 7.0%) 0.0006 ( 7.0%) (A) DominanceInfo
0.0026 ( 61.8%) 0.0018 ( 45.6%) 0.0044 ( 54.0%) 0.0044 ( 54.1%) Canonicalizer
0.0005 ( 11.7%) 0.0005 ( 13.0%) 0.0010 ( 12.3%) 0.0010 ( 12.4%) CSE
0.0003 ( 6.1%) 0.0003 ( 8.3%) 0.0006 ( 7.2%) 0.0006 ( 7.1%) (A) DominanceInfo
0.0002 ( 3.8%) 0.0001 ( 2.8%) 0.0003 ( 3.3%) 0.0003 ( 3.3%) CSE
0.0042 (100.0%) 0.0039 (100.0%) 0.0082 (100.0%) 0.0081 (100.0%) Total
PiperOrigin-RevId: 237825367