This is a second patch for InputGraph cleanup.
Sorry about the size of the patch, but what I did in this
patch is basically moving code from constructor to a new
method, parse(), so the amount of new code is small.
This has no change in functionality.
We've discussed the issue that we have too many classes
to represent a concept of "file". We have File subclasses
that represent files read from disk. In addition to that,
we have bunch of InputElement subclasses (that are part
of InputGraph) that represent command line arguments for
input file names. InputElement is a wrapper for File.
InputElement has parseFile method. The method instantiates
a File. The File's constructor reads a file from disk and
parses that.
Because parseFile method is called from multiple worker
threads, file parsing is processed in parallel. In other
words, one reason why we needed the wrapper classes is
because a File would start reading a file as soon as it
is instantiated.
So, the reason why we have too many classes here is at
least partly because of the design flaw of File class.
Just like threads in a good threading library, we need
to separate instantiation from "start" method, so that
we can instantiate File objects when we need them (which
should be very fast because it involves only one mmap()
and no real file IO) and use them directly instead of
the wrapper classes. Later, we call parse() on each
file in parallel to let them do actual file IO.
In this design, we can eliminate a reason to have the
wrapper classes.
In order to minimize the size of the patch, I didn't go so
far as to replace the wrapper classes with File classes.
The wrapper classes are still there.
In this patch, we call parse() immediately after
instantiating a File, so this really has no change in
functionality. Eventually the call of parse() should be
moved to Driver::link(). That'll be done in another patch.
llvm-svn: 224102
This would permit the ELF reader to check the architecture that is being
selected by the linking process.
This patch also sorts the include files according to LLVM conventions.
llvm-svn: 220129
ELFFile would be a class that rest of the targets would derive from.
To keep the implementation clean, separate the implementation from
rest of the Header file.
llvm-svn: 200168
The main changes are in:
include/lld/Core/Reference.h
include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.
1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers. It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.
The new model is that there is a global Registry object. You programmatically
register the Readers you want with the registry object. Whenever you need to
read/parse a file, you ask the registry to do it, and the registry tries each
registered reader.
For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object.
2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings. Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values. The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value. This tuple system allows conversion to and from strings with
no ambiguities.
llvm-svn: 197727
Also change some local variable names: "ti" -> "context" and
"_targetInfo" -> "_context".
Differential Revision: http://llvm-reviews.chandlerc.com/D1301
llvm-svn: 187823
to the list of undefined atoms.
The processing of undefined atoms from dynamic libraries is controlled by
use-shlib-undefines command line option.
This patch also adds additional command line arguments to allow/disallow
unresolved symbols from shared libraries and mimics GNU ld behavior.
llvm-svn: 179257