The rules around typechecking deduced template arguments during partial
ordering are not clear, and while the prior behavior does not seem to be
correct (it doesn't follow the general model of partial ordering where each
template parameter is replaced by a non-dependent but unique value), the new
behavior is also not clearly right and breaks some existing idioms.
The new behavior is retained for dealing with non-type template parameters
with 'auto' types, as without it even the most basic uses of that feature
don't work. We can revisit this once CWG has come to an agreement on how
partial ordering with 'auto' non-type template parameters is supposed to
work.
llvm-svn: 292183
to make reference to template parameters. This is only a partial
implementation; we retain the restriction that the argument must not be
type-dependent, since it's unclear how that would work given the existence of
other language rules requiring an exact type match in this context, even for
type-dependent cases (a question has been raised on the core reflector).
llvm-svn: 290647
specialized than the primary template. (Put another way, if we imagine there
were a partial specialization matching the primary template, we should never
select it if some other partial specialization also matches.)
llvm-svn: 290593
template parameters, don't look for parameters of outer templates. If a problem
is found in a default template argument, point the diagnostic at the partial
specialization (with a note pointing at the default argument) instead of
pointing it at the default argument and leaving it unclear which partial
specialization os problematic.
llvm-svn: 201031
error to a warning if we're in a case that would be allowed in
C++0x. This "fixes" PR8084 by making Clang accept more code than GCC
and (non-strict) EDG do.
Also, add the missing test case for the C++0x semantics, which should
have been in r113717.
llvm-svn: 113718
therefore not creating ElaboratedTypes, which are still pretty-printed
with the written tag).
Most of these testcase changes were done by script, so don't feel too
sorry for my fingers.
llvm-svn: 98149
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
template template parameter.
When building a template-id type, check whether the template-name
itself is dependent (even if the template arguments are not!) and
handle it as a template-id type.
llvm-svn: 86913
instantiation once we have committed to performing the
instantiation. As part of this, make our makeshift
template-instantiation location information suck slightly less.
Fixes PR5264.
llvm-svn: 85209
templates. Previously, these weren't handled as specializations at
all. The AST for representing these as specializations is still a work
in progress.
llvm-svn: 83498
declarations and explicit template instantiations, improving
diagnostics and making the code usable for function template
specializations (as well as class template specializations and partial
specializations).
llvm-svn: 83436
we have the basics of declaring and storing class template partial
specializations, matching class template partial specializations at
instantiation time via (limited) template argument deduction, and
using the class template partial specialization's pattern for
instantiation.
This patch is enough to make a simple is_pointer type trait work, but
not much else.
llvm-svn: 72662
'struct A<double, int>'
In the "template instantiation depth exceeded" message, print
"-ftemplate-depth-N" rather than "-ftemplate-depth=N".
An unnamed tag type that is declared with a typedef, e.g.,
typedef struct { int x, y; } Point;
can be used as a template argument. Allow this, and check that we get
sensible pretty-printing for such things.
llvm-svn: 66560
response to attempts to diagnose an "incomplete" type. This will force
us to use DiagnoseIncompleteType more regularly (rather than looking at
isIncompleteType), but that's also a good thing.
Implicit instantiation is still very simplistic, and will create a new
definition for the class template specialization (as it should) but it
only actually instantiates the base classes and attaches
those. Actually instantiating class members will follow.
Also, instantiate the types of non-type template parameters before
checking them, allowing, e.g.,
template<typename T, T Value> struct Constant;
to work properly.
llvm-svn: 65924
decls. Test and document the semantic location of class template
specialization definitions that occur within a scope enclosing the
scope of the class template.
llvm-svn: 65478
specializations. In particular:
- Make sure class template specializations have a "template<>"
header, and complain if they don't.
- Make sure class template specializations are declared/defined
within a valid context. (e.g., you can't declare a specialization
std::vector<MyType> in the global namespace).
llvm-svn: 65476
std::vector<int>::allocator_type
When we parse a template-id that names a type, it will become either a
template-id annotation (which is a parsed representation of a
template-id that has not yet been through semantic analysis) or a
typename annotation (where semantic analysis has resolved the
template-id to an actual type), depending on the context. We only
produce a type in contexts where we know that we only need type
information, e.g., in a type specifier. Otherwise, we create a
template-id annotation that can later be "upgraded" by transforming it
into a typename annotation when the parser needs a type. This occurs,
for example, when we've parsed "std::vector<int>" above and then see
the '::' after it. However, it means that when writing something like
this:
template<> class Outer::Inner<int> { ... };
We have two tokens to represent Outer::Inner<int>: one token for the
nested name specifier Outer::, and one template-id annotation token
for Inner<int>, which will be passed to semantic analysis to define
the class template specialization.
Most of the churn in the template tests in this patch come from an
improvement in our error recovery from ill-formed template-ids.
llvm-svn: 65467
specialization of class templates, e.g.,
template<typename T> class X;
template<> class X<int> { /* blah */ };
Each specialization is a different *Decl node (naturally), and can
have different members. We keep track of forward declarations and
definitions as for other class/struct/union types.
This is only the basic framework: we still have to deal with checking
the template headers properly, improving recovery when there are
failures, handling nested name specifiers, etc.
llvm-svn: 64848