Implemented a bunch of relocations found in binaries with medium/large code model and the Local-Exec TLS model. The binaries link and run fine in Qemu.
In addition, the emulation `elf64_sparc` is now recognized.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D77672
The R_ARM_ALU_PC_G0 and R_ARM_LDR_PC_G0 relocations are used by the
ADR and LDR pseudo instructions, and are the basis of the group
relocations that can load an arbitrary constant via a series of add, sub
and ldr instructions.
The relocations need to be obtained via the .reloc directive.
R_ARM_ALU_PC_G0 is much more complicated as the add/sub instruction uses
a modified immediate encoding of an 8-bit immediate rotated right by an
even 4-bit field. This means that the range of representable immediates
is sparse. We extract the encoding and decoding functions for the modified
immediate from llvm/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h as
this header file is not accessible from LLD. Duplication of code isn't
ideal, but as these are well-defined mathematical functions they are
unlikely to change.
Differential Revision: https://reviews.llvm.org/D75349
This is part of the Propeller framework to do post link code layout
optimizations. Please see the RFC here:
https://groups.google.com/forum/#!msg/llvm-dev/ef3mKzAdJ7U/1shV64BYBAAJ and the
detailed RFC doc here:
https://github.com/google/llvm-propeller/blob/plo-dev/Propeller_RFC.pdf
This patch adds lld support for basic block sections and performs relaxations
after the basic blocks have been reordered.
After the linker has reordered the basic block sections according to the
desired sequence, it runs a relaxation pass to optimize jump instructions.
Currently, the compiler emits the long form of all jump instructions. AMD64 ISA
supports variants of jump instructions with one byte offset or a four byte
offset. The compiler generates jump instructions with R_X86_64 32-bit PC
relative relocations. We would like to use a new relocation type for these jump
instructions as it makes it easy and accurate while relaxing these instructions.
The relaxation pass does two things:
First, it deletes all explicit fall-through direct jump instructions between
adjacent basic blocks. This is done by discarding the tail of the basic block
section.
Second, If there are consecutive jump instructions, it checks if the first
conditional jump can be inverted to convert the second into a fall through and
delete the second.
The jump instructions are relaxed by using jump instruction mods, something
like relocations. These are used to modify the opcode of the jump instruction.
Jump instruction mods contain three values, instruction offset, jump type and
size. While writing this jump instruction out to the final binary, the linker
uses the jump instruction mod to determine the opcode and the size of the
modified jump instruction. These mods are required because the input object
files are memory-mapped without write permissions and directly modifying the
object files requires copying these sections. Copying a large number of basic
block sections significantly bloats memory.
Differential Revision: https://reviews.llvm.org/D68065
Hexagon ABI specifies that call x@gdplt is transformed to call __tls_get_addr.
Example:
call x@gdplt
is changed to
call __tls_get_addr
When x is an external tls variable.
Differential Revision: https://reviews.llvm.org/D74443
MC will now output the R_ARM_THM_PC8, R_ARM_THM_PC12 and
R_ARM_THM_PREL_11_0 relocations. These are short-ranged relocations that
are used to implement the adr rd, literal and ldr rd, literal pseudo
instructions.
The instructions use a new RelExpr called R_ARM_PCA in order to calculate
the required S + A - Pa expression, where Pa is AlignDown(P, 4) as the
instructions add their immediate to AlignDown(PC, 4). We also do not want
these relocations to generate or resolve against a PLT entry as the range
of these relocations is so short they would never reach.
The R_ARM_THM_PC8 has a special encoding convention for the relocation
addend, the immediate field is unsigned, yet the addend must be -4 to
account for the Thumb PC bias. The ABI (not the architecture) uses the
convention that the 8-byte immediate of 0xff represents -4.
Differential Revision: https://reviews.llvm.org/D75042
With this patch lld recognizes ARM SBREL relocations.
R_ARM*_MOVW_BREL relocations are not tested because they are not used.
Patch by Tamas Petz
Differential Revision: https://reviews.llvm.org/D74604
Summary:
Generate PAC protected plt only when "-z pac-plt" is passed to the
linker. GNU toolchain generates when it is explicitly requested[1].
When pac-plt is requested then set the GNU_PROPERTY_AARCH64_FEATURE_1_PAC
note even when not all function compiled with PAC but issue a warning.
Harmonizing the warning style for BTI/PAC/IBT.
Generate BTI protected PLT if case of "-z force-bti".
[1] https://www.sourceware.org/ml/binutils/2019-03/msg00021.html
Reviewers: peter.smith, espindola, MaskRay, grimar
Reviewed By: peter.smith, MaskRay
Subscribers: tatyana-krasnukha, emaste, arichardson, kristof.beyls, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74537
Recommit of 0b4a047bfb
(reverted in c29003813a) to incorporate
subsequent fix and add a warning when LLD's interworking behavior has
changed.
D73474 disabled the generation of interworking thunks for branch
relocations to non STT_FUNC symbols. This patch handles the case of BL and
BLX instructions to non STT_FUNC symbols. LLD would normally look at the
state of the caller and the callee and write a BL if the states are the
same and a BLX if the states are different.
This patch disables BL/BLX substitution when the destination symbol does
not have type STT_FUNC. This brings our behavior in line with GNU ld which
may prevent difficult to diagnose runtime errors when switching to lld.
This change does change how LLD handles interworking of symbols that do not
have type STT_FUNC from previous versions including the 10.0 release. This
brings LLD in line with ld.bfd but there may be programs that have not been
linked with ld.bfd that depend on LLD's previous behavior. We emit a warning
when the behavior changes.
A summary of the difference between 10.0 and 11.0 is that for symbols
that do not have a type of STT_FUNC LLD will not change a BL to a BLX or
vice versa. The table below enumerates the changes
| relocation | STT_FUNC | bit(0) | in | 10.0- out | 11.0+ out |
| R_ARM_CALL | no | 1 | BL | BLX | BL |
| R_ARM_CALL | no | 0 | BLX | BL | BLX |
| R_ARM_THM_CALL | no | 1 | BLX | BL | BLX |
| R_ARM_THM_CALL | no | 0 | BL | BLX | BL |
Differential Revision: https://reviews.llvm.org/D73542
There are still problems after the fix in
"[ELF][ARM] Fix regression of BL->BLX substitution after D73542"
so let's revert to get trunk back to green while we investigate.
See https://reviews.llvm.org/D73542
This reverts commit 5461fa2b1f.
This reverts commit 0b4a047bfb.
D73542 made a typo (`rel.type == R_PLT_PC`; should be `rel.expr`) and introduced a regression:
BL->BLX substitution was disabled when the target symbol is preemptible
(expr is R_PLT_PC).
The two added bl instructions in arm-thumb-interwork-shared.s check that
we patch BL to BLX.
Fixes https://bugs.chromium.org/p/chromium/issues/detail?id=1047531
D73474 disabled the generation of interworking thunks for branch
relocations to non STT_FUNC symbols. This patch handles the case of BL and
BLX instructions to non STT_FUNC symbols. LLD would normally look at the
state of the caller and the callee and write a BL if the states are the
same and a BLX if the states are different.
This patch disables BL/BLX substitution when the destination symbol does
not have type STT_FUNC. This brings our behavior in line with GNU ld which
may prevent difficult to diagnose runtime errors when switching to lld.
Differential Revision: https://reviews.llvm.org/D73542
ELF for the ARM architecture requires linkers to provide
interworking for symbols that are of type STT_FUNC. Interworking for
other symbols must be encoded directly in the object file. LLD was always
providing interworking, regardless of the symbol type, this breaks some
programs that have branches from Thumb state targeting STT_NOTYPE symbols
that have bit 0 clear, but they are in fact internal labels in a Thumb
function. LLD treats these symbols as ARM and inserts a transition to Arm.
This fixes the problem for in range branches, R_ARM_JUMP24,
R_ARM_THM_JUMP24 and R_ARM_THM_JUMP19. This is expected to be the vast
majority of problem cases as branching to an internal label close to the
function.
There is at least one follow up patch required.
- R_ARM_CALL and R_ARM_THM_CALL may do interworking via BL/BLX
substitution.
In theory range-extension thunks can be altered to not change state when
the symbol type is not STT_FUNC. I will need to check with ld.bfd to see if
this is the case in practice.
Fixes (part of) https://github.com/ClangBuiltLinux/linux/issues/773
Differential Revision: https://reviews.llvm.org/D73474
* Generalize the code added in D70637 and D70937. We should eventually remove the EM_MIPS special case.
* Handle R_PPC_LOCAL24PC the same way as R_PPC_REL24.
Reviewed By: Bdragon28
Differential Revision: https://reviews.llvm.org/D73424
-fno-pie produces a pair of non-GOT-non-PLT relocations R_PPC_ADDR16_{HA,LO} (R_ABS) referencing external
functions.
```
lis 3, func@ha
la 3, func@l(3)
```
In a -no-pie/-pie link, if func is not defined in the executable, a canonical PLT entry (st_value>0, st_shndx=0) will be needed.
References to func in shared objects will be resolved to this address.
-fno-pie -pie should fail with "can't create dynamic relocation ... against ...", so we just need to think about -no-pie.
On x86, the PLT entry passes the JMP_SLOT offset to the rtld PLT resolver.
On x86-64: the PLT entry passes the JUMP_SLOT index to the rtld PLT resolver.
On ARM/AArch64: the PLT entry passes &.got.plt[n]. The PLT header passes &.got.plt[fixed-index]. The rtld PLT resolver can compute the JUMP_SLOT index from the two addresses.
For these targets, the canonical PLT entry can just reuse the regular PLT entry (in PltSection).
On PPC32: PltSection (.glink) consists of `b PLTresolve` instructions and `PLTresolve`. The rtld PLT resolver depends on r11 having been set up to the .plt (GotPltSection) entry.
On PPC64 ELFv2: PltSection (.glink) consists of `__glink_PLTresolve` and `bl __glink_PLTresolve`. The rtld PLT resolver depends on r12 having been set up to the .plt (GotPltSection) entry.
We cannot reuse a `b PLTresolve`/`bl __glink_PLTresolve` in PltSection as a canonical PLT entry. PPC64 ELFv2 avoids the problem by using TOC for any external reference, even in non-pic code, so the canonical PLT entry scenario should not happen in the first place.
For PPC32, we have to create a PLT call stub as the canonical PLT entry. The code sequence sets up r11.
Reviewed By: Bdragon28
Differential Revision: https://reviews.llvm.org/D73399
Symbol information can be used to improve out-of-range/misalignment diagnostics.
It also helps R_ARM_CALL/R_ARM_THM_CALL which has different behaviors with different symbol types.
There are many (67) relocateOne() call sites used in thunks, {Arm,AArch64}errata, PLT, etc.
Rename them to `relocateNoSym()` to be clearer that there is no symbol information.
Reviewed By: grimar, peter.smith
Differential Revision: https://reviews.llvm.org/D73254
These functions call relocateOne(). This patch is a prerequisite for
making relocateOne() aware of `Symbol` (D73254).
Reviewed By: grimar, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D73250
Summary:
Unlike R_RISCV_RELAX, which is a linker hint, R_RISCV_ALIGN requires the
support of the linker even when ignoring all R_RISCV_RELAX relocations.
This is because the compiler emits as many NOPs as may be required for
the requested alignment, more than may be required pre-relaxation, to
allow for the target becoming more unaligned after relaxing earlier
sequences. This means that the target is often not initially aligned in
the object files, and so the R_RISCV_ALIGN relocations cannot just be
ignored. Since we do not support linker relaxation, we must turn these
into errors.
Reviewers: ruiu, MaskRay, espindola
Reviewed By: MaskRay
Subscribers: grimar, Jim, emaste, arichardson, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71820
R_HINT is ignored like R_NONE. There are no strong reasons to keep
R_HINT. The largest RelExpr member R_RISCV_PC_INDIRECT is 60 now.
Differential Revision: https://reviews.llvm.org/D71822
This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
In AArch64 a branch to an undefined weak symbol that does not have a PLT
entry should resolve to the next instruction. The thunk generation code
can prevent this from happening as a range extension thunk can be generated
if the branch is sufficiently far away from 0, the value of an undefined
weak symbol.
The fix is taken from the Arm implementation of needsThunk(), we prevent a
thunk from being generated to an undefined weak symbol.
fixes pr44451
Differential Revision: https://reviews.llvm.org/D72267
Similar to D71509 (EM_PPC64), on EM_PPC, the IPLT code sequence should
be similar to a PLT call stub. Unlike EM_PPC64, EM_PPC -msecure-plt has
small/large PIC model differences.
* -fpic/-fpie: R_PPC_PLTREL24 r_addend=0. The call stub loads an address relative to `_GLOBAL_OFFSET_TABLE_`.
* -fPIC/-fPIE: R_PPC_PLTREL24 r_addend=0x8000. (A partial linked object
file may have an addend larger than 0x8000.) The call stub loads an address relative to .got2+0x8000.
Just assume large PIC model for now. This patch makes:
// clang -fuse-ld=lld -msecure-plt -fno-pie -no-pie a.c
// clang -fuse-ld=lld -msecure-plt -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc. -fpie will crash because the compiler and the
linker do not agree on the value which r30 stores (_GLOBAL_OFFSET_TABLE_
vs .got2+0x8000).
Differential Revision: https://reviews.llvm.org/D71621
Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If
there is a non-GOT non-PLT relocation, for pointer equality, we change
the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the
.glink entry.
On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence
loads the address from its associated .got.plt slot. An IPLT also has an
associated .got.plt slot and can use the same code sequence.
On EM_PPC64, the PLT code sequence is actually a bl instruction in
.glink . It jumps to `__glink_PLTresolve` (the PLT header). and
`__glink_PLTresolve` computes the .plt slot (relocated by
R_PPC64_JUMP_SLOT).
An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use
`bl` in .iplt . Instead, create a call stub which has a similar code
sequence as PPC64PltCallStub. We don't save the TOC pointer, so such
scenarios will not work: a function pointer to a non-preemptible ifunc,
which resolves to a function defined in another DSO. This is the
restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC
(though on many architectures it works in practice):
Requirement (a): Resolver must be defined in the same translation unit as the implementations.
If an ifunc is taken address but not called, technically we don't need
an entry for it, but we currently do that.
This patch makes
// clang -fuse-ld=lld -fno-pie -no-pie a.c
// clang -fuse-ld=lld -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc and FreeBSD. Calling a function pointer pointing to
a Non-preemptible IFUNC never worked before.
Differential Revision: https://reviews.llvm.org/D71509
Summary:
If none of the input files are ELF object files (for example, when
generating an object file from a single binary input file via
"-b binary"), use a fallback value for the ELF header flags instead
of crashing with an assertion failure.
Reviewers: MaskRay, ruiu, espindola
Reviewed By: MaskRay, ruiu
Subscribers: kevans, grimar, emaste, arichardson, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits, jrtc27
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71101
PltSection is used by both PLT and IPLT. The PLT section may have a
header while the IPLT section does not. Split off IpltSection from
PltSection to be clearer.
Unlike other targets, PPC64 cannot use the same code sequence for PLT
and IPLT. This helps make a future PPC64 patch (D71509) more isolated.
On EM_386 and EM_X86_64, when PLT is empty while IPLT is not, currently
we are inconsistent whether the PLT header is conceptually attached to
in.plt or in.iplt . Consistently attach the header to in.plt can make
the -z retpolineplt logic simpler. It also makes `jmp` point to an
aesthetically better place for non-retpolineplt cases.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71519
This change only affects EM_386. relOff can be computed from `index`
easily, so it is unnecessarily passed as a parameter.
Both in.plt and in.iplt entries are written by writePLT. For in.iplt,
the instruction `push reloc_offset` will change because `index` is now
different. Fortunately, this does not matter because `push; jmp` is only
used by PLT. IPLT does not need the code sequence.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71518
Fixes PPC64 part of PR40438
// clang -target ppc64le -c a.cc
// .text.unlikely may be placed in a separate output section (via -z keep-text-section-prefix)
// The distance between bar in .text.unlikely and foo in .text may be larger than 32MiB.
static void foo() {}
__attribute__((section(".text.unlikely"))) static int bar() { foo(); return 0; }
__attribute__((used)) static int dummy = bar();
This patch makes such thunks with addends work for PPC64.
AArch64: .text -> `__AArch64ADRPThunk_ (adrp x16, ...; add x16, x16, ...; br x16)` -> target
PPC64: .text -> `__long_branch_ (addis 12, 2, ...; ld 12, ...(12); mtctr 12; bctr)` -> target
AArch64 can leverage ADRP to jump to the target directly, but PPC64
needs to load an address from .branch_lt . Before Power ISA v3.0, the
PC-relative ADDPCIS was not available. .branch_lt was invented to work
around the limitation.
Symbol::ppc64BranchltIndex is replaced by
PPC64LongBranchTargetSection::entry_index which take addends into
consideration.
The tests are rewritten: ppc64-long-branch.s tests -no-pie and
ppc64-long-branch-pi.s tests -pie and -shared.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D70937
Fixes AArch64 part of PR40438
The current range extension thunk framework does not handle a relocation
relative to a STT_SECTION symbol with a non-zero addend, which may be
used by jumps/calls to local functions on some RELA targets (AArch64,
powerpc ELFv1, powerpc64 ELFv2, etc). See PR40438 and the following
code for examples:
// clang -target $target a.cc
// .text.cold may be placed in a separate output section.
// The distance between bar in .text.cold and foo in .text may be larger than 128MiB.
static void foo() {}
__attribute__((section(".text.cold"))) static int bar() { foo(); return
0; }
__attribute__((used)) static int dummy = bar();
This patch makes such thunks with addends work for AArch64. The target
independent part can be reused by PPC in the future.
On REL targets (ARM, MIPS), jumps/calls are not represented as
STT_SECTION + non-zero addend (see
MCELFObjectTargetWriter::needsRelocateWithSymbol), so they don't need
this feature, but we need to make sure this patch does not affect them.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D70637
Summary:
Current versions of clang would erroneously emit this relocation not only
against functions (loaded from the GOT) but also against data symbols
(e.g. a table of function pointers). LLD was then changing this into a
branch-and-link instruction, causing the program to jump to the data
symbol at run time. I discovered this problem when attempting to boot
MIPS64 FreeBSD after updating the to the latest upstream master.
Reviewers: atanasyan, jrtc27, espindola
Reviewed By: atanasyan
Subscribers: emaste, sdardis, krytarowski, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70406
This makes it clear `ELF/**/*.cpp` files define things in the `lld::elf`
namespace and simplifies `elf::foo` to `foo`.
Reviewed By: atanasyan, grimar, ruiu
Differential Revision: https://reviews.llvm.org/D68323
llvm-svn: 373885
This allows us to delete `using namespace llvm::support::endian` and
simplify D68323. This change adds runtime config->endianness check but
the overhead should be negligible.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D68561
llvm-svn: 373884
The R_MIPS_JALR relocation denotes jalr/jr instructions in position
independent code. Both these instructions take a target's address from
the $25 register. If offset to the target symbol fits into the 18-bits,
it's more efficient to replace jalr/jr by bal/b instructions.
Differential Revision: https://reviews.llvm.org/D68057
llvm-svn: 372951
In case of linking binary blobs which do not have any ELF headers, we can
deduce MIPS ABI ELF header flags from an `emulation` option.
Patch by Kyle Evans.
llvm-svn: 372513
Like rLLD354040
Previously, for unknown relocation types, in -no-pie/-pie mode, we got something like:
foo.o: unrecognized relocation ...
In -shared mode:
error: can't create dynamic relocation ... against symbol: yyy in readonly segment
Delete the default case from Hexagon::getRelExpr and add the error there. We will get consistent error message like `error: unknown relocation (1024) against symbol foo`
Reviewed By: sidneym
Differential Revision: https://reviews.llvm.org/D66275
llvm-svn: 369260
Fixes https://github.com/ClangBuiltLinux/linux/issues/640
R_PPC64_REL16_HI was incorrectly computed as an R_ABS relocation.
rLLD368964 made it a linker failure. Change it to use R_PC to fix the
failures.
Add ppc64-reloc-rel.s for these R_PPC64_REL* tests.
llvm-svn: 369184
R_GOTPLT is relative to .got.plt since D59594. Since R_HEXAGON_GOT
relocations always have 0 r_addend, they can use R_GOTPLT instead.
Reviewed By: sidneym
Differential Revision: https://reviews.llvm.org/D66274
llvm-svn: 369128
Like rLLD354040.
Previously, for unrecognized relocation types, in -no-pie/-pie mode, we got something like:
foo.o: unrecognized relocation ...
In -shared mode:
error: can't create dynamic relocation ... against symbol: yyy in readonly segment
Delete the default case from AArch64::getRelExpr and add the error there.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D66277
llvm-svn: 368983
Currently the following 3 relocation types do not trigger the creation
of a canonical PLT (which changes STT_GNU_IFUNC to STT_FUNC and
redirects all references):
1) GOT-generating (`needsGot`)
2) PLT-generating (`needsPlt`)
3) R_ABS with 0 addend in a writable location. This is used for
for ifunc function pointers in writable sections such as .data and .toc.
This patch deletes case 3) to simplify the R_*_IRELATIVE generating
logic added in D57371. Other advantages:
* It is guaranteed no more than 1 R_*_IRELATIVE is created for an ifunc.
* PPC64: no need to special case ifunc in toc-indirect to toc-relative relaxation. See D65755
The deleted elf::addIRelativeRelocs demonstrates that one-pass scan
through relocations makes several optimizations difficult. This is
something we can think about in the future.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D65995
llvm-svn: 368661
This patch Implements the R_AARCH64_TLSLE_MOVW_TPREL_G*[_NC]. These are
logically the same calculation as the existing TLSLE relocations with
the result written back to mov[nz] and movk instructions. A typical code
sequence is:
movz x0, #:tprel_g2:foo // bits [47:32] of R_TLS with overflow check
movk x0, #:tprel_g1_nc:foo // bits [31:16] of R_TLS with no overflow check
movk x0, #:tprel_g0_nc:foo // bits [15:0] of R_TLS with no overflow check
This type of code sequence is usually used with a large code model.
Differential Revision: https://reviews.llvm.org/D65882
Fixes: PR42853
llvm-svn: 368293
Fixes PR42759.
```
// If ifunc is taken address in -fPIC code, it may have a toc entry
.section .toc,"aw",@progbits
.quad ifunc
// ifunc may be defined as STT_GNU_IFUNC in another object file
.type ifunc, %gnu_indirect_function
```
If ifunc is non-preemptable (e.g. when linking an executable), the toc
entry will be relocated by R_PPC64_IRELATIVE.
R_*_IRELATIVE represents the symbolic value of a
non-preemptable ifunc (not associated with a canonical PLT) in a writable location. It has an unknown value at
link time, so we cannot apply toc-indirect to toc-relative relaxation.
Reviewed By: luporl, sfertile
Differential Revision: https://reviews.llvm.org/D65755
llvm-svn: 368057
That allows to remove duplicated code which subtracts 0x7000 from the
R_MIPS_TLS_TPREL_XXX relocations values in the `MIPS::relocateOne`
function.
llvm-svn: 366888
This patch is mechanically generated by clang-llvm-rename tool that I wrote
using Clang Refactoring Engine just for creating this patch. You can see the
source code of the tool at https://reviews.llvm.org/D64123. There's no manual
post-processing; you can generate the same patch by re-running the tool against
lld's code base.
Here is the main discussion thread to change the LLVM coding style:
https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html
In the discussion thread, I proposed we use lld as a testbed for variable
naming scheme change, and this patch does that.
I chose to rename variables so that they are in camelCase, just because that
is a minimal change to make variables to start with a lowercase letter.
Note to downstream patch maintainers: if you are maintaining a downstream lld
repo, just rebasing ahead of this commit would cause massive merge conflicts
because this patch essentially changes every line in the lld subdirectory. But
there's a remedy.
clang-llvm-rename tool is a batch tool, so you can rename variables in your
downstream repo with the tool. Given that, here is how to rebase your repo to
a commit after the mass renaming:
1. rebase to the commit just before the mass variable renaming,
2. apply the tool to your downstream repo to mass-rename variables locally, and
3. rebase again to the head.
Most changes made by the tool should be identical for a downstream repo and
for the head, so at the step 3, almost all changes should be merged and
disappear. I'd expect that there would be some lines that you need to merge by
hand, but that shouldn't be too many.
Differential Revision: https://reviews.llvm.org/D64121
llvm-svn: 365595
GCC emits warning on this line:
error: enumeral and non-enumeral type in conditional
expression [-Werror=extra]
Change-Id: I04969cc32e27e310968b88ebaa4e1c4894528d74
llvm-svn: 365434
RISC-V psABI doesn't specify TLS relaxation. It can be handled the same
way as we handle ARM TLS. RISC-V TLS is even simpler because GD/LD use
the same relocation type.
Reviewed By: jrtc27, ruiu
Differential Revision: https://reviews.llvm.org/D63220
llvm-svn: 364813
* Handle initial relocation types: R_RISCV_CALL_PLT and R_RISCV_GOT_HI20.
* Produce dynamic relocation types: R_RISCV_COPY, R_RISCV_RELATIVE, R_RISCV_JUMP_SLOT.
* Define SymbolRel as R_RISCV_{32,64}
* Generate PLT header: it is used by lazy binding PLT in glibc.
* R_RISCV_CALL is changed from R_PC to R_PC_PLT. If the target symbol is preemptable, this will suppress an unnecessary "canonical PLT".
This behavior is different from ld.bfd but it is agreed the current lld behavior is favored.
I have received positive responses from the binutils maintainer that the ABI/binutils implementation can be improved, see:
https://github.com/riscv/riscv-elf-psabi-doc/issues/98https://sourceware.org/bugzilla/show_bug.cgi?id=24685
Many -no-pie/-pie/-shared programs linked against musl or glibc should work with this patch.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D63076
llvm-svn: 364812
Similar to R_AARCH64_ABS32, R_PPC64_ADDR32 can represent either a signed
value or unsigned value, thus we should use `[-2**(n-1), 2**n)` instead of
`[-2**(n-1), 2**(n-1))` to check overflows.
The issue manifests as a bogus linker error when linking the powerpc64le Linux kernel.
The new behavior is compatible with ld.bfd's complain_overflow_bitfield.
The upper bound of the error message is not correct. Fix it as well.
The changes to R_PPC_ADDR16, R_PPC64_ADDR16, R_X86_64_8 and R_X86_64_16 are similar.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63690
llvm-svn: 364164
Summary:
Our rule to create R_*_RELATIVE for absolute relocation types were
loose. D63121 made it stricter but it failed to create R_*_RELATIVE for
R_ARM_TARGET1 and R_PPC64_TOC. rLLD363236 worked around that by
reinstating the original behavior for ARM and PPC64.
This patch is an attempt to simplify the logic.
Note, in ld.bfd, R_ARM_TARGET2 --target2=abs also creates
R_ARM_RELATIVE. This seems a very uncommon scenario (moreover,
--target2=got-rel is the default), so I do not implement any logic
related to it.
Also, delete R_AARCH64_ABS32 from AArch64::getDynRel. We don't have
working ILP32 support yet. Allowing it would create an incorrect
R_AARCH64_RELATIVE.
For MIPS, the (if SymbolRel, then RelativeRel) code is to keep its
behavior unchanged.
Note, in ppc64-abs64-dyn.s, R_PPC64_TOC gets an incorrect addend because
computeAddend() doesn't compute the correct address. We seem to have the
wrong behavior for a long time. The important thing seems that a dynamic
relocation R_PPC64_TOC should not be created as the dynamic loader will
error R_PPC64_TOC is not supported.
Reviewers: atanasyan, grimar, peter.smith, ruiu, sfertile, espindola
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63383
llvm-svn: 363928
ARM and RISC-V do not support TLS relaxations. However, for General
Dynamic and Local Dynamic models, if we are producing an executable and
the symbol is non-preemptable, we know it must be defined and the
R_ARM_TLS_DTPMOD32/R_RISCV_TLS_DTPMOD{32,64} dynamic relocation can be
omitted because it is always 1. This may be necessary for static linking
as DTPMOD may not be expected at load time.
Merge handleARMTlsRelocation() into handleTlsRelocation(). This requires
more logic to R_TLSGD_PC and R_TLSLD_PC. Because we use SymbolicRel to
resolve the relocation at link time, R_ARM_TLS_DTPMOD32 can be deleted
from relocateOne(). It cannot be used as a static relocation type.
As a bonus, the additional logic in R_TLSGD_PC code can be shared by the
TLS support for RISC-V (D63220).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63333
llvm-svn: 363927
R_RISCV_{ADD,SET,SUB}* are used for local label computation.
Add a new RelExpr member R_RISCV_ADD to represent them.
R_RISCV_ADD is treated as a link-time constant because otherwise
R_RISCV_{ADD,SET,SUB}* are not allowed in -pie/-shared mode.
In glibc Scrt1.o, .rela.eh_frame contains such relocations.
Because .eh_frame is not writable, we get this error:
ld.lld: error: can't create dynamic relocation R_RISCV_ADD32 against symbol: .L0 in readonly segment; recompil object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output
>>> defined in ..../riscv64-linux-gnu/lib/Scrt1.o
With D63076 and this patch, I can run -pie/-shared programs linked against glibc.
Note llvm-mc cannot currently produce R_RISCV_SET* so they are not tested.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63183
llvm-svn: 363128
This reverts commit r363060 and restores r362867.
r362867 is innocent. The ppc64le-lld-multistage-test bot failure was due to a clang/gcc .toc bug:
ld.lld: error: relocation refers to a discarded section: .rodata._ZNK4llvm3MVT13getSizeInBitsEv
>>> defined in utils/TableGen/CMakeFiles/llvm-tblgen.dir/CodeGenRegisters.cpp.o
>>> referenced by CodeGenRegisters.cpp
>>> utils/TableGen/CMakeFiles/llvm-tblgen.dir/CodeGenRegisters.cpp.o:(.toc+0x0)
It will be worked around by D63182.
llvm-svn: 363124
The current rule is loose: `!Sym.IsPreemptible || Expr == R_GOT`.
When the symbol is non-preemptable, this allows absolute relocation
types with smaller numbers of bits, e.g. R_X86_64_{8,16,32}. They are
disallowed by ld.bfd and gold, e.g.
ld.bfd: a.o: relocation R_X86_64_8 against `.text' can not be used when making a shared object; recompile with -fPIC
This patch:
a) Add TargetInfo::SymbolicRel to represent relocation types that resolve to a
symbol value (e.g. R_AARCH_ABS64, R_386_32, R_X86_64_64).
As a side benefit, we currently (ab)use GotRel (R_*_GLOB_DAT) to resolve
GOT slots that are link-time constants. Since we now use Target->SymbolRel
to do the job, we can remove R_*_GLOB_DAT from relocateOne() for all targets.
R_*_GLOB_DAT cannot be used as static relocation types.
b) Change the condition to `!Sym.IsPreemptible && Type != Target->SymbolicRel || Expr == R_GOT`.
Some tests are caught by the improved error checking (ld.bfd/gold also
issue errors on them). Many misuse .long where .quad should be used
instead.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63121
llvm-svn: 363059
I've change the variable names used in PPC64.cpp from "Instr" to "Insn"
because "Insn" is a more common abbreviation for "instruction".
While changing PPC64.cpp relocateOne(), make R_PPC64_ADDR16_LO{_DS}
slightly more efficient by saving a read and a write for the TocOptimize
case.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63043
llvm-svn: 362867
We create several types of synthetic sections for loadable partitions, including:
- The dynamic symbol table. This allows code outside of the loadable partitions
to find entry points with dlsym.
- Creating a dynamic symbol table also requires the creation of several other
synthetic sections for the partition, such as the dynamic table and hash table
sections.
- The partition's ELF header is represented as a synthetic section in the
combined output file, and will be used by llvm-objcopy to extract partitions.
Differential Revision: https://reviews.llvm.org/D62350
llvm-svn: 362819
Branch Target Identification (BTI) and Pointer Authentication (PAC) are
architecture features introduced in v8.5a and 8.3a respectively. The new
instructions have been added in the hint space so that binaries take
advantage of support where it exists yet still run on older hardware. The
impact of each feature is:
BTI: For executable pages that have been guarded, all indirect branches
must have a destination that is a BTI instruction of the appropriate type.
For the static linker, this means that PLT entries must have a "BTI c" as
the first instruction in the sequence. BTI is an all or nothing
property for a link unit, any indirect branch not landing on a valid
destination will cause a Branch Target Exception.
PAC: The dynamic loader encodes with PACIA the address of the destination
that the PLT entry will load from the .plt.got, placing the result in a
subset of the top-bits that are not valid virtual addresses. The PLT entry
may authenticate these top-bits using the AUTIA instruction before
branching to the destination. Use of PAC in PLT sequences is a contract
between the dynamic loader and the static linker, it is independent of
whether the relocatable objects use PAC.
BTI and PAC are independent features that can be combined. So we can have
several combinations of PLT:
- Standard with no BTI or PAC
- BTI PLT with "BTI c" as first instruction.
- PAC PLT with "AUTIA1716" before the indirect branch to X17.
- BTIPAC PLT with "BTI c" as first instruction and "AUTIA1716" before the
first indirect branch to X17.
The use of BTI and PAC in relocatable object files are encoded by feature
bits in the .note.gnu.property section in a similar way to Intel CET. There
is one AArch64 specific program property GNU_PROPERTY_AARCH64_FEATURE_1_AND
and two target feature bits defined:
- GNU_PROPERTY_AARCH64_FEATURE_1_BTI
-- All executable sections are compatible with BTI.
- GNU_PROPERTY_AARCH64_FEATURE_1_PAC
-- All executable sections have return address signing enabled.
Due to the properties of FEATURE_1_AND the static linker can tell when all
input relocatable objects have the BTI and PAC feature bits set. The static
linker uses this to enable the appropriate PLT sequence.
Neither -> standard PLT
GNU_PROPERTY_AARCH64_FEATURE_1_BTI -> BTI PLT
GNU_PROPERTY_AARCH64_FEATURE_1_PAC -> PAC PLT
Both properties -> BTIPAC PLT
In addition to the .note.gnu.properties there are two new command line
options:
--force-bti : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_BTI and warn for every relocatable object
that does not.
--pac-plt : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_PAC. As PAC is a contract between the loader
and static linker no warning is given if it is not present in an input.
Two processor specific dynamic tags are used to communicate that a non
standard PLT sequence is being used.
DTI_AARCH64_BTI_PLT and DTI_AARCH64_BTI_PAC.
Differential Revision: https://reviews.llvm.org/D62609
llvm-svn: 362793
Many -static/-no-pie/-shared/-pie applications linked against glibc or musl
should work with this patch. This also helps FreeBSD PowerPC64 to migrate
their lib32 (PR40888).
* Fix default image base and max page size.
* Support new-style Secure PLT (see below). Old-style BSS PLT is not
implemented, so it is not suitable for FreeBSD rtld now because it doesn't
support Secure PLT yet.
* Support more initial relocation types:
R_PPC_ADDR32, R_PPC_REL16*, R_PPC_LOCAL24PC, R_PPC_PLTREL24, and R_PPC_GOT16.
The addend of R_PPC_PLTREL24 is special: it decides the call stub PLT type
but it should be ignored for the computation of target symbol VA.
* Support GNU ifunc
* Support .glink used for lazy PLT resolution in glibc
* Add a new thunk type: PPC32PltCallStub that is similar to PPC64PltCallStub.
It is used by R_PPC_REL24 and R_PPC_PLTREL24.
A PLT stub used in -fPIE/-fPIC usually loads an address relative to
.got2+0x8000 (-fpie/-fpic code uses _GLOBAL_OFFSET_TABLE_ relative
addresses).
Two .got2 sections in two object files have different addresses, thus a PLT stub
can't be shared by two object files. To handle this incompatibility,
change the parameters of Thunk::isCompatibleWith to
`const InputSection &, const Relocation &`.
PowerPC psABI specified an old-style .plt (BSS PLT) that is both
writable and executable. Linkers don't make separate RW- and RWE segments,
which causes all initially writable memory (think .data) executable.
This is a big security concern so a new PLT scheme (secure PLT) was developed to
address the security issue.
TLS will be implemented in D62940.
glibc older than ~2012 requires .rela.dyn to include .rela.plt, it can
not handle the DT_RELA+DT_RELASZ == DT_JMPREL case correctly. A hack
(not included in this patch) in LinkerScript.cpp addOrphanSections() to
work around the issue:
if (Config->EMachine == EM_PPC) {
// Older glibc assumes .rela.dyn includes .rela.plt
Add(In.RelaDyn);
if (In.RelaPlt->isLive() && !In.RelaPlt->Parent)
In.RelaDyn->getParent()->addSection(In.RelaPlt);
}
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62464
llvm-svn: 362721
The following abstract relocation types (RelExpr) are PPC64 ELFv2 ABI specific,
not used by PPC32. So rename them to prevent confusion when the PPC32 port is improved.
* R_PPC_CALL R_PPC_CALL_PLT:
R_PPC_CALL_PLT represents R_PPC64_REL14 and R_PPC64_REL24.
If the function is not preemptable, R_PPC_CALL_PLT can be optimized to R_PPC_CALL:
the formula adjusts the symbol VA from the global entry point to the local entry point.
* R_PPC_TOC: represents R_PPC64_TOC. We don't have a test. Add one to ppc64-relocs.s
Rename it to R_PPC64_TOCBASE because `@tocbase` is the assembly form.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62800
llvm-svn: 362359
In ELF v2 ABI, R_PPC64_GOT_DTPREL16* are not relaxed.
This family of relocation types are used for variables outside of 2GiB
of the TLS block. 2 instructions cannot materialize a DTPREL offset that
is not 32-bit.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62737
llvm-svn: 362357
GotEntrySize and GotPltEntrySize were added in D22288. Later, with
the introduction of wordsize() (then Config->Wordsize), they become
redundant, because there is no target that sets GotEntrySize or
GotPltEntrySize to a number different from Config->Wordsize.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D62727
llvm-svn: 362220
This handles two initial relocation types R_X86_64_GOTPC32_TLSDESC and
R_X86_64_TLSDESC_CALL, as well as the GD->LE and GD->IE relaxations.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D62513
llvm-svn: 361911
This is a minor improvement inspired by https://bugs.llvm.org/show_bug.cgi?id=38303.
A person reported that he observed message complaining about unsupported R_ARM_V4BX:
error: can't create dynamic relocation R_ARM_V4BX against local symbol in readonly segment; recompile object files with -fPIC
But with -z notext he only saw a relocation number, what is not convenient:
error: ../../gfx/cairo/libpixman/src/pixman-arm-neon-asm-bilinear.o:(.text+0x4F0): unrecognized reloc 40
Also, in the error messages we use relocation but not reloc.
With this patch we start to print one of the following messages:
error: file.o: unrecognized relocation Unknown(999)
error: file.o: unrecognized relocation R_X_KNOWN_BY_LLVM_BUT_UNSUPPORTED_BY_LLD_NAME
There is no way to write a test for that I believe.
Differential revision: https://reviews.llvm.org/D62237
llvm-svn: 361472
The -n (--nmagic) disables page alignment, and acts as a -Bstatic
The -N (--omagic) does what -n does but also marks the executable segment as
writeable. As page alignment is disabled headers are not allocated unless
explicit in the linker script.
To disable page alignment in LLD we choose to set the page sizes to 1 so
that any alignment based on the page size does nothing. To set the
Target->PageSize to 1 we implement -z common-page-size, which has the side
effect of allowing the user to set the value as well.
Setting the page alignments to 1 does mean that any use of
CONSTANT(MAXPAGESIZE) or CONSTANT(COMMONPAGESIZE) in a linker script will
return 1, unlike in ld.bfd. However given that -n and -N disable paging
these probably shouldn't be used in a linker script where -n or -N is in
use.
Differential Revision: https://reviews.llvm.org/D61688
llvm-svn: 360593
Suggested by Sean Fertile and Peter Smith.
Thunk section spacing decrease the total number of thunks. I measured a
decrease of 1% or less in some large programs, with no perceivable
slowdown in link time. Override getThunkSectionSpacing() to enable it.
0x2000000 is the farthest point R_PPC64_REL24 can reach. I tried several
numbers and found 0x2000000 works the best. Numbers near 0x2000000 work
as well but let's just use the simpler number.
As demonstrated by the updated tests, this essentially changes placement
of most thunks to the end of the output section. We leverage this
property to fix PR40740 reported by Alfredo Dal'Ava Júnior:
The output section .init consists of input sections from several object
files (crti.o crtbegin.o crtend.o crtn.o). Sections other than the last
one do not have a terminator. With this patch, we create the thunk after
the last .init input section and thus fix the issue. This is not
foolproof but works quite well for such sections (with no terminator) in
practice.
Reviewed By: ruiu, sfertile
Differential Revision: https://reviews.llvm.org/D61720
llvm-svn: 360405
Use `ld` and `daddiu` instructions in MIPS64 PLT records. That fixes a
segmentation fault.
Patch by Qiao Pengcheng.
Differential Revision: https://reviews.llvm.org/D61586
llvm-svn: 360187
This is based on D54720 by Sean Fertile.
When accessing a global symbol which is not defined in the translation unit,
compilers will generate instructions that load the address from the toc entry.
If the symbol is defined, non-preemptable, and addressable with a 32-bit
signed offset from the toc pointer, the address can be computed
directly. e.g.
addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
ld/lwa 3, 0(3) # load the value from the address
.section .toc,"aw",@progbits
.LC0: .tc var[TC],var
can be relaxed to
addis 3,2,var@toc@ha # this may be relaxed to a nop,
addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
ld/lwa 3, 0(3) # load the value from the address
We can delete the test ppc64-got-indirect.s as its purpose is covered by
newly added ppc64-toc-relax.s and ppc64-toc-relax-constants.s
Reviewed By: ruiu, sfertile
Differential Revision: https://reviews.llvm.org/D60958
llvm-svn: 360112
Summary:
We don't take localentry offset into account, and thus may fail to
create a long branch when the gap is just a few bytes smaller than 2^25.
relocation R_PPC64_REL24 out of range: 33554432 is not in [-33554432, 33554431]
relocation R_PPC64_REL24 out of range: 33554436 is not in [-33554432, 33554431]
Fix that by adding the offset to the symbol VA.
Differential Revision: https://reviews.llvm.org/D61058
llvm-svn: 359094
Summary:
Fixes PR35242. A simplified reproduce:
thread_local int i; int f() { return i; }
% {g++,clang++} -fPIC -shared -ftls-model=local-dynamic -fuse-ld=lld a.cc
ld.lld: error: can't create dynamic relocation R_X86_64_DTPOFF32 against symbol: i in readonly segment; recompile object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output
In isStaticLinkTimeConstant(), Syn.IsPreemptible is true, so it is not
seen as a constant. The error is then issued in processRelocAux().
A symbol of the local-dynamic TLS model cannot be preempted but it can
preempt symbols of the global-dynamic TLS model in other DSOs.
So it makes some sense that the variable is not static.
This patch fixes the linking error by changing getRelExpr() on
R_386_TLS_LDO_32 and R_X86_64_DTPOFF{32,64} from R_ABS to R_DTPREL.
R_PPC64_DTPREL_* and R_MIPS_TLS_DTPREL_* need similar fixes, but they are not handled in this patch.
As a bonus, we use `if (Expr == R_ABS && !Config->Shared)` to find
ld-to-le opportunities. R_ABS is overloaded here for such STT_TLS symbols.
A dedicated R_DTPREL is clearer.
Differential Revision: https://reviews.llvm.org/D60945
llvm-svn: 358870
Summary:
This relocation type is used by R_386_TLS_GD. Its formula is the same as
R_GOTPLT (e.g R_X86_64_GOT{32,64} R_386_TLS_GOTIE). Rename it to be clearer.
Differential Revision: https://reviews.llvm.org/D60941
llvm-svn: 358868
The code previously specified a 32-bit range for R_RISCV_HI20 and
R_RISCV_LO12_[IS], however this is incorrect as the maximum offset on
RV64 that can be formed from the immediate of lui and the displacement
of an I-type or S-type instruction is -0x80000800 to 0x7ffff7ff. There
is also the same issue with a c.lui and LO12 pair, whose actual
addressable range should be -0x20800 to 0x1f7ff.
The tests will be included in the next patch that converts all RISC-V
tests to use llvm-mc instead of yaml2obj, as assembler support has
matured enough to write tests in them.
Differential Revision: https://reviews.llvm.org/D60414
llvm-svn: 357995
This change itself doesn't mean anything, but it helps D59780 because
in patch, we don't know whether we need to create a CET-aware PLT or
not until we read all input files.
llvm-svn: 357194