This required changing a bit of how attributes/types are parsed. A new
`KeywordSwitch` class was added to AsmParser that provides a StringSwitch
like API for parsing keywords with a set of potential matches. It intends to
both provide a cleaner API, and enable injection for code completion. This
required changing the API of `generated(Attr|Type)Parser` to handle the
parsing of the keyword, instead of having the user do it. Most upstream
dialects use the autogenerated handling and didn't require a direct update.
Differential Revision: https://reviews.llvm.org/D129267
Array-value-copy fails to generate a temporary array for case like this:
subroutine bug(b)
real, allocatable :: b(:)
b = b(2:1:-1)
end subroutine
Since LHS may need to be reallocated, lowering produces the following FIR:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
fir.result %new_storage
}
%lhs = fir.array_load %lhs_mem
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %lhs_mem
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Since %b in array_load and %lhs_mem in array_merge_store are not the same SSA
values, array-value-copy does not detect the conflict and does not produce
a temporary array. This causes incorrect result in runtime.
The suggested change in lowering is to generate this:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
%lhs = fir.array_load %b
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %b
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
%lhs = fir.array_load %new_storage
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %new_storage
fir.result %new_storage
}
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Note that there are actually 3 branches in FIR, so the assignment loops
are currently produced in three copies, which is a code-size issue.
It is possible to generate just two branches with two copies of the loops,
but it is not addressed in this change-set.
Differential Revision: https://reviews.llvm.org/D129314
Move the device_type parser to a separate parser AccDeviceTypeExprList. Preparatory work for D106968.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D106967
Set the isOptional flag for the self clause. Move the optional and parenthesis part of the parser. Update the rest of the code to deal with the optional value.
Preparatory work for D106968.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D106965
This patch is part of the upstreaming effort from fir-dev branch.
This is the last patch for the upstreaming effort.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129187
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
In free form source, pedantic mode will elicit portability warnings
about missing spaces when a token string ends with a character that
can be in an identifier and there is no space between that last token
character and a following character that can also be part of an identifier.
This behavior doesn't really work well for the token strings that are
parsed for edit descriptors in FORMAT statements. For example, the
'F' in FORMAT(F7.3) is followed by a digit, but obviously no space is
necessary. Free form or not, FORMATs are their own odd little world.
This patch adds trailing blanks to these FORMAT edit descriptor token
parsers to disable the missing space check, and extends the documentation
for token string parsing to explain why this technique works.
Differential Revision: https://reviews.llvm.org/D129023
Replace most tests of the explicit Attr::ELEMENTAL symbol flag with
a new predicate IsElementalProcedure() that works correctly for alternate
ENTRY points and does the right thing for procedure interfaces that
reference elemental intrinsic functions like SIN() whose elemental
nature does not propagate.
Differential Revision: https://reviews.llvm.org/D129022
In folding and in the runtime library for real MOD/MODULO(A,P),
detect overflow from the division A/P and return a properly signed
zero result. (When A/P overflows and both A and P are finite numbers
with nonzero P, the quotient would be a large integer when rounded to
the precision of the floating-point representation.)
Differential Revision: https://reviews.llvm.org/D129020
Create a TargetCharacteristics class to centralize the few items of
target specific information that are relevant to semantics. Use the
new class for all target queries, including derived type component layout
modeling.
Future work will initialize this class with target information
provided or forwarded by the drivers, and use it to fold layout-dependent
intrinsic functions like TRANSFER().
Differential Revision: https://reviews.llvm.org/D129018
Updates: Attempts to work around build issues on Windows.
This commit refactors the syntax of "ugly" attribute/type formats to not use
strings for wrapping. This means that moving forward attirbutes and type formats
will always need to be in some recognizable form, i.e. if they use incompatible
characters they will need to manually wrap those in a string, the framework will
no longer do it automatically.
This has the benefit of greatly simplifying how parsing attributes/types work, given
that we currently rely on some extremely complicated nested parser logic which is
quite problematic for a myriad of reasons; unecessary complexity(we create a nested
source manager/lexer/etc.), diagnostic locations can be off/wrong given string escaping,
etc.
Differential Revision: https://reviews.llvm.org/D118505
When addressing a substring of a character array, codegen emits two
GEPs: one for to compute the address of the base element, and a second
one to address the first characters from that element.
The first GEP still returns the LLVM array type (if the FIR array type could be
translated to an array type. Therefore) so zero
indexes must be added to the second GEP in this case to cover for the
Fortran array dimensions before inserting the susbtring offset index.
Surprisingly, the previous code worked ok when MLIR emits none opaque
pointers. But with opaque pointers, the two GEPs are folded in an
invalid GEP where the substring offset becomes an offset for the outer
array dimension.
Note that I tried to fix the issue by modifying the first GEP to return the
element type, but this still gave bad results (here something might be
wrong with opaque pointer in MLIR or LLVM).
Differential Revision: https://reviews.llvm.org/D129079
This patch just make the code more similar
in each conversion.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129071
The previous code made the assumption that the defining
operation is a fir::ConvertOp without checking. This results in
segmentation fault in code like the added test.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129077
Finalization is F2003 and although the runtime supports it already,
lowering is not ensuring all the derived type are finalized properly
when they should. This will require surveying the places where lowering
needs to call it. Add a hard TODO for now.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D129069
Co-authored-by: Jean Perier <jperier@nvidia.com>
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128976
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Fix for broken/degenerate forall case where there is no assignment to an
array under the explicit iteration space. While this is a multiple
assignment, semantics only raises a warning.
The fix is to add a test that the explicit space has any sort of array
to be updated, and if not then the do_loop nest will not require a
terminator to forward array values to the next iteration.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128973
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add source coordinates to BeginWait and BeginWaitAll calls
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128970
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128935
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
The check to see if the arguments for the MIN/MAX intrinsics were of CHARACTER
type was not handling assumed length characters. In this case, the FIR type is
"!fir.ref<!fir.char<1,?>>".
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128922
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
As Fortran 2018 16.9.163, the reshape is the only intrinsic which
requires the shape argument to be rank-one integer array and the SIZE
of it to be one constant expression. The current expression lowering
converts the shape expression with slice in intrinsic into one box value
with the box element type of unknown extent. However, the genReshape
requires the box element type to be constant size. So, convert the box
value into one with box element type of sequence of 1 x constant. This
corner case is found in cam4 in SPEC 2017
https://github.com/llvm/llvm-project/issues/56140.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D128597
The original assertion is not necessarily correct since the shape
argument may involve a slice of an array (an expression) and not a whole
vector with constant length. In the presence of a slice operation, the
size must be computed (left as a TODO for now).
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128894
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Even though the array is declared with '*' upper bounds, it has an
initial value that has a statically known shape. Use the shape from
the type of the initializer when the declared size is '*'.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128889
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
The names of CHARACTER strings were being truncated leading to invalid
collisions and other failures. This change makes sure to use the entire
string as the seed for the unique name.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128884
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Here is a character SELECT CASE construct that requires a temp to hold the
result of the TRIM intrinsic call:
```
module m
character(len=6) :: s
contains
subroutine sc
n = 0
if (lge(s,'00')) then
select case(trim(s))
case('11')
n = 1
case default
continue
case('22')
n = 2
case('33')
n = 3
case('44':'55','66':'77','88':)
n = 4
end select
end if
print*, n
end subroutine
end module m
```
This SELECT CASE construct is implemented as an IF/ELSE-IF/ELSE comparison
sequence. The temp must be retained until some comparison is successful.
At that point the temp may be freed. Generalize statement context processing
to allow multiple finalize calls to do this, such that the program always
executes exactly one freemem call.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler, vdonaldson
Differential Revision: https://reviews.llvm.org/D128852
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
When a submodule appears in a source file and the compiler can't find the
named ancestor module (and submodule, if one appears), crashes may occur
later due to the absence of a scope. For better resilience, a dummy
ancestral scope should be generated within which the submodule scope
can be created.
Differential Revision: https://reviews.llvm.org/D128760
- Add verifiers that determine if an Op requires type parameters or
not and checks that the correct number of parameters is specified.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128828
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
LEN(f(...)), where "f" is a non-intrinsic function, should not be folded
to anything else unless the result is a known constant value. While there
are conceivable cases in which we could do better (e.g., an internal function
whose length is a host-associated INTENT(IN) dummy argument), there are
other cases that we're getting wrong.
Differential Revision: https://reviews.llvm.org/D128759
Shared is the default behaviour in the IR, so no handling is required.
Default clause with shared or none do not require any handling since
Shared is the default behaviour in the IR and None is only required
for semantic checks.
This patch is carved out from D123930 to remove couple of false TODOs.
Reviewed By: peixin, shraiysh
Differential Revision: https://reviews.llvm.org/D128797
Co-authored-by: Nimish Mishra <neelam.nimish@gmail.com>
1. Remove the redundant collapse clause in MLIR OpenMP worksharing-loop
operation.
2. Fix several typos.
3. Refactor the chunk size type conversion since CreateSExtOrTrunc has
both type check and type conversion.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D128338
As Fortran 2018 8.6.4(1), the BIND statement specifies the BIND attribute
for a list of variables and common blocks.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D127120
Added new -lower-math-early option that defaults to 'true' that matches
the current math lowering scheme. If set to 'false', the intrinsic math
operations will be lowered to MLIR operations, which should potentially
enable more MLIR optimizations, or libm calls, if there is no corresponding
MLIR operation exists or if "precise" mode is requested.
The generated math MLIR operations are then converted to LLVM dialect
during codegen phase.
The -lower-math-early option is not exposed to users currently. I plan to
get rid of the "early" lowering completely, when "late" lowering
is robust enough to support all math intrinsics that are currently
supported via pgmath. So "late" mode will become default and -lower-math-early
option will not be needed. This will effectively eliminate the mandatory
dependency on pgmath in Fortran lowering, but this is WIP.
Differential Revision: https://reviews.llvm.org/D128385
If BIND(C) appears on an internal procedure, it must have a null binding
label, i.e. BIND(C,NAME="").
Also address conflicts with D127725 which was merged during development.
Differential Revision: https://reviews.llvm.org/D128676
This patch fixes a couple of issues with the lowering of user defined assignment.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D128730
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Fix bugs relating to support for characters of different kinds. Lowering
was creating bad FIR and MLIR that crashed in conversion to LLVM IR.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128723
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
For the rapid triage push, just add a TODO for the degenerate POINTER
assignment case. The LHD ought to be a variable of type !fir.box, but it
is currently returning a shadow variable for the raw data pointer. More
investigation is needed there.
Make sure that conversions are applied in FORALL degenerate contexts.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D128724
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Support for optimisation flags in LLVM Flang was originally added in
https://reviews.llvm.org/D128043. That patch focused on LLVM
middle-end/optimisation pipelines. With this patch, Flang will
additionally configure LLVM backend pass pipelines accordingly. This
behavior is consistent with Clang.
New hook is added to translate compiler optimisation flags (e.g. `-O3`)
into backend optimisation level: `getCGOptLevel`. Identical hooks are
available in Clang and LLVM. In other words, the meaning of these
optimisation flags remains consistent with other sub-projects that use
LLVM backends.
Differential Revision: https://reviews.llvm.org/D128050
This patch adds support for most common optimisation compiler flags:
`-O{0|1|2|3}`. This is implemented in both the compiler and frontend
drivers. At this point, these options are only used to configure the
LLVM optimisation pipelines (aka middle-end). LLVM backend or MLIR/FIR
optimisations are not supported yet.
Previously, the middle-end pass manager was only required when
generating LLVM bitcode (i.e. for `flang-new -c -emit-llvm <file>` or
`flang-new -fc1 -emit-llvm-bc <file>`). With this change, it becomes
required for all frontend actions that are represented as
`CodeGenAction` and `CodeGenAction::executeAction` is refactored
accordingly (in the spirit of better code re-use).
Additionally, the `-fdebug-pass-manager` option is enabled to facilitate
testing. This flag can be used to configure the pass manager to print
the middle-end passes that are being run. Similar option exists in Clang
and the semantics in Flang are identical. This option translates to
extra configuration when setting up the pass manager. This is
implemented in `CodeGenAction::runOptimizationPipeline`.
This patch also adds some bolier plate code to manage code-gen options
("code-gen" refers to generating machine code in LLVM in this context).
This was extracted from Clang. In Clang, it simplifies defining code-gen
options and enables option marshalling. In Flang, option marshalling is
not yet supported (we might do at some point), but being able to
auto-generate some code with macros is beneficial. This will become
particularly apparent when we start adding more options (at least in
Clang, the list of code-gen options is rather long).
Differential Revision: https://reviews.llvm.org/D128043
This patch restores several calls to Optional::value() in preference
to Optional::operator*.
The Flang C++ Style Guide tells us to use x.value() where no presence
test is obviously protecting a *x reference to the contents.
Differential Revision: https://reviews.llvm.org/D128590
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, vdonaldson
Differential Revision: https://reviews.llvm.org/D128502
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Lower the `parallel loop` contrsuct and refactor some of the code
of parallel and loop lowering to be reused.
Also add tests for loop and parallel since they were not upstreamed.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128510
In merge FSOURCE and TSOURCE must have the same Fortran dynamic types,
but this does not imply that FSOURCE and TSOURCE will be lowered to the
same MLIR types. For instance, TSOURCE may be a character expression
with a compile type constant length (!fir.char<1,4>) while FSOURCE may
have dynamic length (!fir.char<1,?>).
Cast FSOURCE to TSOURCE MLIR types to handle these cases.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128507
Co-authored-by: Jean Perier <jperier@nvidia.com>
Explicitly map host associated symbols in DoConcurrent with shared
locality-spec, clauses in OpenMP/OpenACC. The mapping of host-assoc
symbols is set to their parent SymbolBox. This is achieved through
a new interface function in the AbstractConverter.
This was already upstream for OpenMP.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128518
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>